ANALYSIS OF WOVEN FABRICS FOR REINFORCED COMPOSITE MATERIALS

Technical Final Report
MSC TFR 1715/0210
August, 1987

Prepared by:
Norris F. Dow V. Ramnath
B. Walter Rosen

Prepared for:
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

PREFACE

This report, covering the work done for the NASA Langley Research Center on Contract NAS1-17205 during the period November 3, 1982 through April 30, 1987, was prepared by the Principal Investigator for MSC, Mr. Norris Dow, in collaboration with Mr. V. Ramnath and the Program Manager for MSC, Dr. B. Walter Rosen and other members of the MSC staff. The authors wish to express their appreciation to their collaborators and to Mr . H . Benson Dexter, who was the NASA Technical Representative, for their many contributions and technical discussions.

APPROVED BY;

B. Walter Rosen

Program Manager

TABLE OF CONTENTS

Page
INTRODUCTION 1
OBJECTIVES 2
APPROACH 4
RESULTS 6
ANALYSIS METHODOLOGY 6
POTENTIAL FOR PERFORMANCE 7
ADVANCED WEAVES 12
DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION OF WOVEN-FABRIC-REINFORCED COMPOSITE STIFFNESS PROPERTIES 15
BIAXIAL WEAVES 15
"NDPROP" MODEL 15
TRIAXIAL WEAVES 16
EFFECTS OF THRU THE THICKNESS RUNNING ELEMENTS 17
DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION OF WOVEN-FABRIC-REINFORCED COMPOSITE STRENGTHS 18
COMPARISON OF ANALYSIS AND EXPERIMENT 19
Standard Weaves 20
Advanced Weaves 24
EVALUATION OF POTENTIALS FOR PERFORMANCE OF WOVEN FABRIC REINFORCEMENTS 27
APPROACH 27
EVALUATION PROCEDURES 27
EVALUATION PARAMETERS 28
Tension 28
Compression 29
EVALUATIONS 30
Tension 30
Compression 34
HYBRIDS 36
EVALUATIONS OF HYBRIDS 37
Tension 37
Compression 38
DEVELOPMENT OF ADVANCED WEAVES 41
BUMPY FABRICS 41
STITCHBASE WEAVES 42
THICK TRIAXIAL WEAVES 43
THE PERFECT WEAVE 43
GUIDELINES FOR IMPROVED FABRIC DESIGNS 44
BIAXIAL FABRICS 44
Float Length 44
Braids 44
TRIAXIAL FABRICS 45
Volume Fractions 45
Bumpy Fabrics 45
Stitchbase Weaves 45
Hybrids 46
Multilayer Constructions 46
OVERALL CONCLUSIONS AND RECOMMENDATIONS 47
ANALYSIS METHODOLOGY 47
POTENTIALS FOR PERFORMANCE 47
ADVANCED WEAVES 48
REFERENCES 49

TABLE OF CONTENTS, (Cont'd)

TABLES 52
FIGURES 67
APPENDIX A - ANALYTICAL MODELS FOR THE CALCULATION OF WOVEN FABRIC PROPERTIES 153
APPENDIX B - THE AVERAGE STRESS MODEL FOR THE ANALYSIS OF STRENGTHS OF WOVEN FABRIC COMPOSITES 193
APPENDIX C - CALCULATOR PROGRAMS 201

LIST OF SYMBOLS

(As used in main text, tables, and figures)

INTRODUCTION

A courtship is in progress between the centuries-old technology of textiles and the decades-old technology of composites. Stimulated initially by potential economies offered by the ease of handling stable, woven constructions (to begin with primarily 8 -harness satins), and encouraged by their performance in prototype composite structures (for example, ref. 1), a beneficent interaction between these two technologies has been developing. Resulting, on the textile side, are advances in weaving capabilities to make available multi-directional (ref. 2) and complex three-dimensional configurations (ref. 3). On the composite side are: (1) advances in analysis methodology as required for the complex configurations becoming available, including effects due to yarn out-of-straightness (crimp) due to weaving and composite lay-up; (2) progress toward development of criteria for thru the thickness reinforcement to reduce both interlaminar shear and damage resulting from lateral impact (refs. $4 \& 5$); and (3) generation of guidelines for improved three-dimensional (multi-directional) weaves.

The present report covers activities in all three of the latter categories. Interactions with textile technology are suggested as appropriate.

The question indubitably arises - apart from economies from ease of handling in manufacture, why woven instead of the obviously superior straight filaments? Importantly, as will be shown, if the detail designs of weave and composite are proper - providing gently crimped yarns and avoiding matrix pockets and voids, there should be no loss in overall properties for wovens compared to straight filaments in multi-directional arrays. The total potential reinforcement for a given volume fraction is a constant, and actually, as will become increasingly evident in succeeding sections of this report, there are a number of corollary potentials for multi-directional properties offered by woven fabrics: -
(1) Multi-directional reinforcement in a single ply
(2) Potentials for interweaving two or more plies to eliminate interlaminar weaknesses
(3) Possibilities of weaving each lanina's reinforcement to nest with adjacent laminae, to yield constructions of tailorable thicknesses with enhanced thru the thickness properties.

OBJECTIVES

The first objective of this study was the development of improved analytical methods for the prediction of the physical behavior of woven fabric reinforced composites. Here the interaction between textiles and composites is indeed important. Photomicrographs of fabric reinforced composites (Figure 1) reveal significant changes in reinforcement geometry from idealized weave structure. Emphasis was accordingly first directed toward the development of realistic models of the actual resulting constructions to use as bases for analyses. Analysis development was undertaken for all aspects of mechanical behavior. Progress toward that goal is reported in the sections "DEVELOPMENT OF ANALYTICAL METHODS FOR WOVEN-FABRIC REINFORCED COMPOSITE STIFFNESS PROPERTIES" AND "DEVELOPMENT OF ANALYTICAL METHODS FOR WOVEN-FABRIC REINFORCED COMPOSITE STRENGTHS." Comparison of the resulting property predictions with experiments and with predictions of previously available analysis are given in the following section.

Because of the demonstrated susceptibility of conventional composite laminates to damage from lateral impact (for example, ref. 5) studies were made of the influence of thru the thickness running reinforcement elements for the enhancement of thickness direction composite properties. Trade-offs among longitudinal, transverse (widthwise), and transverse (thicknesswise) properties were quantified. The objectives here were adequate definitions of both the potentials for property improvements in the thickness direction and types of configurations appropriate to provide such improvements. Thus a framework was established within which desired interactions between composite and textile design technologies might develop. Studies relating to the thru the thickness reinforcement problem are found in all sections of this report, including the composite/textile technology interactions in the sections "DEVELOPMENT OF ADVANCED WEAVES" and "GUIDELINES FOR IMPROVED FABRIC DESIGNS".

Improved fabric designs comprise the main objective. Through improvement in understanding of the detailed mechanics of reinforcement, combined with advances in fabric formation techniques, it does appear that impactresistant composites of enhanced performance capabilities can become accessible. Indeed progress is in evidence in both these areas: for example, the mechanics of in-plane reinforcement by fabrics as influenced by
fineness of weave has been demonstrated (ref. 6); the mechanics of thru the thickness reinforcement by finely spaced stitches has been demonstrated (ref. 7); and the weaving of triaxial fabrics hitherto considered not feasible has been demonstrated (ref. 8). Studies directed toward improved fabric reinforcement designs are presented in the final sections of this report.

APPROACH

The woven fabrics problem was divided into three areas, to be attacked sequentially:
(1) Development of Analytical Methodology
(2) Evaluations of Performance Potentials
(3) Development of Advanced Weaves

At the outset it appeared that the state of the art of analysis of woven fabric reinforced composites needed to be both reviewed and supplemented to provide an adequately sound basis for the attack upon the following areas of investigation. The approach elected was a combined analytical/experimental investigation. The analysis was derived in large measure from the accumulated composite analysis technology that had led to references 9 and 10 and that has been incorporated in MSC's X-CAP computer code. Experiments were conducted at the Langley Research Center to help guide and confirm the further development of analytical methodology.
Similarly, for the determination of performance potentials, structural/ material efficency analysis procedures presented in references 11 and 12 were used as the starting point for extension to the 3 - D regime of thru the thickness reinforced composites. Thus in both the analysis development and the performance evaluation areas the approaches used were essentially a typical build-on-developed-technology approach. For the development of advanced weaves, however, a rather different approach was required.

Weavers, like magicians, are not wont to divulge their methodologies. Reference material corresponding to that available for analysis development and performance evaluation was not available to delineate the limits of weaving capabilities. Accordingly, the approach used for this third and most important phase of the problem was the two-fold one of
(1) Defining desirable weave configurations, based on the results of the first two areas of investigation.
(2) Determining or inventing ways in which such configurations can be made.

Abstract

As will be seen, limitations arising because of lack of weaving capability related almost entirely to fineness of weave. The ordinary multiharness loom can weave an astonishing variety of three-dimensional configurations. The recent development of a multi-harness triaxial loom (ref. 8) further extends the capability. Advanced textile technology appears capable of supporting advanced composite reinforcement technology.

RESULTS

The results obtained in each of the categories "Analysis Methodology", "Potentials for Performance", and "Development of Advanced Weaves" are summarized below. More detailed discussion of the development and implications of these results will be found in the body of the report.

ANALYSIS METHODOLOY

1. A realistic model was generated to use as the basis for development of the analysis of the properties of woven-fabric reinforced composites. This model was derived based on photomicrographic studies (for example Fig. 1) of various woven-reinforced composites performed at the Langley Research Center. Use of this model led to the development of analytical procedures yielding elastic property predictions in good agreement with experiments for satin weaves in tension but less satisfactory agreement for plain weaves and in compression.
2. A sequential failure analysis, similar to sequential ply failure analysis for 2-D composite laninates, was developed for 3-D constructions. This analysis utilized "Average Stresses" on fibers and matrix (as described herein) to determine regions of first and subsequent fracture, and established methodology for accounting for resulting property degradations. Satisfactory correlations with experiment were demonstrated for this analysis in tension, - less so in compression.
3. The MSC NDPROP computer code was modified to incorporate the foregoing results. Thus stiffness and strength properties of composites incorporating multi-directional woven reinforcements are readily accessible. A copy of this code has been furnished to NASA Langley.

1. Invariance

The fact that certain combinations of calculated stiffness properties of composites are invariant for a fixed volume fraction reinforcement was employed to assist in the evaluation of tradeoffs in properties resulting from configuration changes. It was shown, for example, in reference 13 , that if the reinforcing configuration provides three-dimensional isotropy, the magnitudes of the elastic properties achieved are identical regardless of the specifics of the configuration used. Similarly, it can be shown that the sum of the stiffnesses in the stiffness matrix (usually C_{11}, C_{12} etc. in the literature, $\$_{1}, \$_{2}$ etc. herein) is another such invariant - hence, the enhancement of any one stiffness (such as the thru the thickness stiffness $\$_{6}$) can only be done at the expense of other stiffnesses.

2. For Composites in Tension

a. The most effective approach for evaluating performance potentials of various configurations in tension was found to be a plot of tensile stress/density ratio $\frac{\sigma_{x}}{\rho}$ (as ordinate) vs. both shear stiffness/density ratio $\frac{G x y}{\rho}$ and axial stiffness ratio $\frac{E_{x}}{\rho}$ (as abscissae) so that the ordinate value for a given configuration identifies both its shear and extensional properties. On such a plot, maximum values of $\frac{\sigma_{\mathrm{x}}}{\rho}$ which meet required stiffness $\frac{G_{x y}}{\rho}$ and $\frac{E_{x}}{\rho}$ represent minimum weight. (For example figure 2. Detailed discussion of such evaluations is given in the section "Methodologies for Structural Efficiency Evaluations.") Figure 2 is a summary
plot of this type, embodying many of the results of the evaluations performed, as noted in the following discussion.
(1) Maximum values of $\frac{\sigma_{x}}{\rho}$ (highest strength/weight ratio and lightest structure) always correspond to minimum shear stiffness requirements $\frac{G}{\rho}$ but not to minimum axial stiffness requirements $\frac{\mathrm{E}_{\mathrm{x}}}{\rho}$). As is to be expected, appropriate reinforcement configurations approach simple unidirectionals as shear stiffness requirements decrease.
(2) As shear stiffness requirements increase, off-axis reinforcements are needed and values of $\frac{{ }_{x}}{\rho}$ decrease. Up to shear stiffness requirements approximately 2 to $21 / 2$ times that provided by unidirectional reinforcements, simple angle-ply (up to about $\pm 15^{\circ}$) constructions are the lightest. For higher shear stiffness, $\pm \phi^{\circ} / 90^{\circ}$ configurations emerge as most efficient (as shown in figure 3 for T-300; also found true for Kevlar, as noted in the section "Parametric Studies of Properties"; further, for the same shear stiffness T-300 yielded substantially lighter weights then Kevlar - the margin increasing with increasing stiffness requirements; hybrids were intermediate - Figures 4 and 5.
b. A plot such as figure 2 is also useful for comparing various approaches to design for tension with requirements for stiffness in shear - a common problem encountered in aircraft wings, helicopter rotor blades, propellers, etc. Thus, for example, figure 2 provides the following comparisons:
(1) Aluminum alloy (7075-T6) is not in contention with T$300 / 5208$ in either the $\pm \phi^{\circ}$ or the $\pm \phi^{\circ} / 90^{\circ}$
configuration. If additional requirements such as 3-D isotropy are encountered, however, the aluminum alloy emerges superior. Similarly, if substantial thru the thickness reinforcement is required, the advantage of T-300/5208 over aluminum is greatly reduced or lost completely. For example, the Omniweave braids (ref.14) either in the basic "diagonals of a cube" configuration (OM_{4} in fig. 2) or with a fifth (axial) reinforcement direction added $\left(\mathrm{OM}_{5}\right)$, while providing good tensile strength values if loaded along a reinforcement direction, are deficient in shear stiffness. If the braids are oriented for maximum shear stiffness (the bottom point on the figure) they are deficient in tensile strength.
(2) If stiffness is not a criterion, figure 2 shows that EGlass is in contention for tensile loadings. The tensile strength/density ratio is superior to aluminum, but the strain at failure is approximately five times as much. Axial stiffness is more apt to be a limitation for glass than for aluminum or for any of the other fibers considered.
c. The invariance of the sum of the terms in the stiffness matrix demands a penalty in other stiffnesses for an increase in thru the thickness stiffness. This penalty is rather attenuated by being distributed among the various other stiffnesses so that the effect on any one - such as the longitudinal or shear stiffness is relatively small. For example, for a typical quasi-isotropic 2-D configuration the transfer of enough reinforcement material to the thru the thickness direction to produce a 1% increase in the thru the thickness-direction stiffness, E_{z}, results in less than 0.1% decrease in axial stiffness, E_{x}, and shear stiffness, $G_{x y}$. (See the section "Effects of thru the thickness Reinforcements" herein.)

While such stiffness penalties are orderly and small, effects on structural performance in some cases can be substantial and cannot be readily anticipated. The addition of thru the thickness-running elements can induce new failure modes which can be particularly degrading of most efficient configurations. For example, for a $0^{\circ} / \pm 15^{\circ} 2-D$ configuration putting 10% of the reinforcement material in the thru the thickness direction can reduce the value of axial strength/density, $\frac{\sigma_{x}}{\rho}$, by 25% (see figure 6) approximately. While the corresponding reduction for a $\pm 15^{\circ} / 90^{\circ}$ configuration is only about 16% (see figure 7), it is still greater than the percentage of material employed thru the thickness. Thru the thickness reinforcement demands thorough design and analysis for most effective performance.

Hybrids play a role in the thru the thickness reinforcement problem. Here again adequate design and analysis is important. For example, $0^{\circ} / \pm 15^{\circ} \mathrm{T}-300$ composites with 10% Kevlar thru the thickness show only about 11% loss in $\frac{\sigma_{x}}{\rho}$ compared to the simple $2-\mathrm{D}$ configuration (c.f. 25% for all T 300 as above). Reversing the constituents to $0^{\circ} /+15^{\circ}$ Kevlar with $10 \% \mathrm{~T}-300$ thru the thickness, however, is a disaster nearly 50% loss in $\frac{\sigma_{x}}{\rho}$ due to the reduced overall stiffnesses provided by the Kevlar and the reduced compliance to transverse cracking provided by the T-300. See figures 8 and 9. Totally apart from its inherent toughness, Kevlar appears most promising, if properly used, as a thru the thickness constituent.

3. For Composites in Compression

(a)

In compression, material strength/density values ($\frac{-\sigma x}{\rho}$) are not the adequate measures of performance that values of $\frac{\sigma_{\mathrm{x}}}{\rho}$ are in tension. A measure that accounts for buckling
resistance as well as strength is required. Such a measure is the "Indicator Number" derived in reference 15 and used extensively in references 12 and 16 . The plate buckling Indicator Number $I_{P}^{*}=\frac{E_{p}^{l / 6} \sigma_{C u}^{1 / 2}}{c}$, considered in detail in the section "Parametric Studies of Properties" herein, is accordingly used here to provide a plot for compressive properties (figure 10) similar to Figure 2 for tension.

Results of evaluations from Figure 10 are as follows:
(1) Maximum values of I_{P}^{*} (lightest structures) always correspond to minimum shear stiffness requirements $\frac{G x y}{\rho}$ (but not to minimum axial stiffness requirements $\frac{E_{x}}{\rho}$). As is to be expected, configurations appropriate for such requirements approach simple unidirectionals.
(2) As shear stiffness requirements increase, off-axis reinforcements are needed and values of I_{P}^{*} decrease. The $\pm \phi^{\circ} / 90^{\circ}$ configuration was found to be the most effective for all shear stiffness requirements with either graphite or Kevlar reinforcements.
(3) Comparisons of Indicator Numbers for T-300/5208 2-D constructions with other reinforcement configurations and aluminum alloy confirm the superiority of $T-300$ for compressive applications. The gains possible compared to aluminum or 3 -D constructions like Omniweave $\left(\mathrm{OM}_{4}\right.$, OM_{5}) are indeed substantial.
(4) The Indicator Number provides a direct measure of the performance penalty associated with the addition of thru the thickness reinforcement. The magnitude of the decrease is summarized by the plot of Figure 11 for a 2 D quasi-isotropic configuration. The value of the

Abstract

decrement in I_{P}^{*} for an increment in thru the thickness reinforcement increases as the amount of thru the thickness reinforcement increases. When the total amount of thru the thickness reinforcement is $1 / 10$ of the total in the configuration, the decrement is $1 / 10$ of 1% for each 18 increment in the amount of thru the thickness reinforcement. When the amount of thru the thickness reinforcement is $4 / 10$ of the total, the decrement in I_{P}^{*} increases to $3 / 10$ of 18 . Typical results of deploying $1 / 10$ and $2 / 10$ of the total volume fraction reinforcement thru the thickness are illustrated in Figure 12 for the $\pm \phi^{\circ} / 90^{\circ}$ configuration.

ADVANCED WEAVES

Progress was made toward the definition of weaving concepts which both capitalize on advances in textile technology and are most appropriate for composite reinforcement, as follows:
(1) Nesting. In order to take advantage of the inherent flexibility of construction provided by laminations, a "bumpy" fabric construction was proposed (Figure 13) comprising auxiliary warps running atop, or on both faces of an essentially plain weave base fabric. Stacking such constructions provides overlapping, thru the thickness yarns as illustrated in Figure 14. First samples of such constructions, woven of $\mathrm{T}-300$ carbon yarns by Textile Technologies, Inc., showed adequate dimensional consistency for nesting, volume fraction reinforcements of over 50 percent and performance characteristics consistent with such volume fractions (see Figures 2 and 10). While the area of damage from lateral impact for the nested construction was found to be smaller than for equivalent ordinary laminates, strengths after such damage were not increased. Photomicrographs suggested that the bumps were not bumpy enough. In addition, the weaver suggested that the tightly woven plain weave base fabric (18 x 18 yarns/inch) may
have suffered substantial fiber damage during the weaving operation.
(2) Second Generation Bumpy Fabric. A second generation bumpy fabric was designed in light of the foregoing observations (Figure 15). In this design the auxiliary warps are stacked two high and the spaces between them laterally reduced substantially compared to those of Figures 13 and 14. This constuction is currently being tested.
(3) Bulbous Blade Bumpy (BBB) Fabrics. A bumpy fabric construction to provide even greater thru the thickness reinforcement than provided by the simple auxiliary warps of (1) or (2) above has been designed. This construction both increases the bumpy overlap and provides for a kind of interference fit between laminae (Figure 16). This construction has not yet been woven. A patent has been applied for covering these bumpy constructions.
(4) Triaxial Weaves. Triaxial weaves combine potential for multidirectional reinforcement within a single ply, and, in some configurations such as the Substrate Weave, potentials for high volume fraction reinforcement. The substrate weave with auxiliary warps as shown in Figure 17 has been woven by Richard Dow on NASA Contract NASI-17877. A corresponding fabric with BBB has been designed (Figure 18).
(5) Stitchbase Weaves. The "locked intersection" characteristic of many triaxial weaves provides a dimensional stability to the construction adequate to insure that stacked configurations can be precisely matched. Thus weaves with regular holes could be stitched through the holes for thru the thickness reinforcement without damage to the yarns in the fabric. Example Stitchbase Weaves are shown in Figure 19.
(6) Fine Weave. A related study (ref. 6) has shown a substantial "size effect" for fine weaves as reinforcements. The use of such
construction is proposed for special applications such as at bolted or riveted joints. The new developments in triaxial weaving that led to the capability to weave the Substrate Weave make fine triaxial weaves a possibility for such applications.

DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION OF WOVEN-FABRICREINFORCED COMPOSITE STIFFNESS PROPERTIES

The mechanics of woven-fabric-reinforced composites are not as well understood as those for tape-reinforced laminates. The behavior of woven-fabric-reinforced composites is related to the additional geometric parameters introduced by the complexity of the weave construction and modifications caused by the composite fabrication process. A methodology was therefore developed, based on extensive photomicrographs of various woven reinforcements provided by NASA Langley, to establish a realistic base for the development of the detailed analytical three-dimensional treatment required to account properly for this complexity. The development of this analysis for both biaxial and triaxial weaves is described herewith.

```
BIAXIAL WEAVES
```

Various analytical models exist in the literature for the prediction of woven-fabric reinforced composite elastic properties, references 17 and 18 . Three different models -.- "the mosaic model", "the fiber undulation model" and "the bridging model" have been used by Chou and Ishikawa for predicting fabric thermoelastic properties. Each of these approaches is based on a one or two dimensional representation of the woven fabrics.

During the course of the present program, a number of different mathematical models have been formulated. A detailed account of the approach, the modeling assumptions and results for standard biaxial fabrics is given in Appendix A. Comparison with experimental data indicated that the "NDPROP" model was the most suitable for the desired purpose.
"NDPROP" MODEL

An important aspect of the development of this model was the formulation of a rational geometric configuration to represent the various fabrics under consideration. The geometric models were based on photomicrographs similar to the ones shown in Figure 20. As seen in the photomicrographs,
the yarns assume several cross-sectional shapes and flatten out to fill space almost completely. Very small amounts of matrix interstitial pockets can be seen with the result that high fiber volume fraction reinforcements can occur. The "NDPROP" geometry developed to correspond to these photomicrographs is shown in cross-section in Figure 21 and the variation in shape of a given yarn bundle along its length is shown for two different weaves in Figure 22. Based upon the geometry of Figure 22, the yarn bundle can be represented as an assemblage of short unidirectional fiber reinforced composites oriented in various directions. This geometric assemblage represents the input to the "NDPROP" code to be used for calculation of elastic stiffnesses.

Properties can be obtained from the code for either an Upper Bound (using assumed displacement fields and minimizing the strain energy) or a Lower Bound (using assumed traction fields and minimizing the complementary energy). For relatively small amounts of yarn waviness and small amounts of interstitial matrix material the Upper Bound yields results that are closer to experimentally determined values. Typical results generated using the Upper Bound are shown for $T-300 / E p o x y ~\left(v_{f}=0.6\right)$ composites for selected weaves in Table 1 . The trends of increasing in-plane and decreasing thru the thickness moduli as the harness number of the weave increases can be observed. The eight harness satin fabric properties are similar to the properties of a cross-plied $\left(0^{\circ} / 90^{\circ}\right)$ laminate, properties of which are also shown in Table 1. Similar trends can also be observed for in-plane and thru the thickness shear moduli. Detailed correlations between predicted and measured fabric properties are presented in the section entitled "Experimental Program".

TRIAXIAL WEAVES

A related approach to that used for biaxial fabrics was used for triaxial fabrics. Here analyses were based on a first approximation assumption of elliptical yarn cross-sections. A cross-sectional view of triaxial weave with such a yarn is shown in Figure 23. The procedure for determining the yarn geometry and volume fraction of reinforcement is also outlined in Figure 23. The approach is first to assume the volume fraction of yarn within the yarn bundle and then solve a transcendental equation to determine
the yarn geometrical parameters. The overall volume fraction of fiber within the fabric is finally computed and checked with the experimentally determined value.

From Figure 23, it can be observed that the yarn consists of a straight section of length ℓ and two curved segments of ellipses subtending angles of γ at their centers of curvature. For input to NDPROP the curved segments are divided into several smaller segments and given sets of direction numbers and volume fractions. Typical results generated using this code are shown for the BiPlain and Substrate Weaves (see Figure 24) in Table 2. The Substrate Weave has less crimp in the warp yarns than the BiPlain Weave. In the results shown in Table 2 , the X-direction refers to the direction bisecting the +30 degree and -30 degree directions. The results are calculated for fiber volume fractions of 50%. Properties of a $\pm 30^{\circ} / 90^{\circ}$ laminate have also been listed for comparison purposes.

EFFECTS OF THRU THE THICKNESS RUNNING ELEMENTS

The procedure to analyze special weaves having thru the thickness running elements is essentially similar to that outlined above. The basic repeating elements of the weaves are first identified. The yarns are then divided into straight segments, curved segments or segments of any of the standard weaves described earlier. Further sub-division of the curved segments may be done as required. The sets of volume fractions and direction numbers of the various yarn bundle segments used to model the weave are used by "NDPROP" to calculate the elastic properties.

For filaments without curved segments algebraic equations representative of the NDPROP analysis were derived for the strength and stiffnesses properties of $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90^{\circ} / 90^{\circ}$ configurations. These equations, are readily programmable for a hand-held calculator. Programs for the Hewlett-Packard 41-C are included with the equations in Appendix C.

DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION OF WOVEN-FABRIC REINFORCED COMPOSITE STRENGTHS

Based on comparisons with other approaches and some experimental results, the "NDPROP" Upper Bound was selected as the approach to be followed for determining fabric stiffness properties. Efforts were then devoted to developing a corresponding consistent and realistic model for predicting strengths, based on the assumed geometric configurations for the various fabrics and the "NDPROP" Upper Bound.

Initially, the strength approach was formulated on a yarn bundle level. Three-dimensional stress analyses were conducted on the fabric composite modeled as an assemblage of oriented yarn bundles. Stresses on each yarn bundle in its local coordinate system were calculated and compared to input yarn bundle allowable strengths using the maximum stress failure criterion. One of the main disadvantages of this method lies in the fact that the input bundle allowable strengths have to be modified each time the assumed fiber volume fraction within the bundle is changed. While this is fairly straight-forward for axial strengths, no consistent procedure exists to define bundle transverse and shear strengths as a function of fiber volume fraction.

Accordingly, an "Average Stress Model" was used and the strength approach was formulated on an overall constituent fiber and matrix level. The yarn bundle stresses were broken down into constituent fiber and matrix stresses using the "Average Stress Model". That is, the bundle stresses and strains were equated to the volume averages of the corresponding fiber and matrix stresses and strains. Then, the constitutive stress-strain relations of the fiber, matrix and yarn bundle were used to compute constituent stresses. Thus, the matrix (or fiber) stresses could be determined as a function of the fiber volume fraction, compliance matrices of the fiber, matrix and unidirectional composite and the applied composite bundle stresses. Although the stress states in the fiber and matrix vary from point to point, failure analyses conducted on the basis of average states of stress may be more realistic: The input allowables for the fiber and matrix strengths were used to compute failure ratios for the fiber and matrix for tensile, compressive and shear failure modes. The strength approach was
then extended into a sequential failure analysis mode wherein matrix dominated failures are considered not catastrophic. If the first failure is a matrix failure, the matrix properties for the appropriate yarn bundle are reduced and the analysis is continued until fiber failure occurs. Ultimate strength is characterized by fiber axial failure or sudden increase in strain levels due to stiffness reductions as a result of large numbers of transverse and shear failures. The details of the strength approach are relegated to Appendix B.

Typical results from this approach are shown for $\mathrm{T}-300 /$ Epoxy biaxial and triaxial woven fabrics in Tables 3 and 4, respectively. Trends among the various fabrics styles are similar to those seen for the elastic properties. Discussions regarding the merits of the strength approach will be made in the section entitled "COMPARISONS OF ANALYSIS AND EXPERIMENT" wherein the results of data correlations between predicted and measured fabric strengths will be presented.

COMPARISONS OF ANALYSIS AND EXPERIMENT

An experimental program was conducted at NASA, Langley with the following objectives:

1. To verify the analytical predictions of standard woven fabric properties and strengths and to explore differences in toughness characteristics among the various fabric reinforced composites and compare them to those of equivalent tape laminates;
2. To serve as a guide for modifying the analytical models and methodology based upon the data correlations in 1 ;
3. To determine the properties and strengths of the advanced weaves developed in this program and compare them to those predicted analytically;
4. To determine possible enhancements in toughness characteristics among the newly developed advanced weaves in comparison with both tape laminates and standard weaves; and
5. To guide the development of advanced weaves based on the shortcomings or advantages experienced in 3 and 4 .

The results presented in this section are arranged in two parts: those for standard biaxial and triaxial weaves and those for the newly developed advanced weaves.

Standard Weaves

Tests were conducted at NASA, Langley using T-300/934 graphite/epoxy material and the following fabric styles: Plain weave, Oxford weave, 5 Harness Satin weave, 8 Harness Satin weave and BiPlain Triaxial weave. Some Kevlar/934 triaxial weave samples were also available for testing.

Biaxial Weave Elastic Properties and Strengths

Calculations were made using the "NDPROP" code in order to perform data correlations with experimental results. The weave parameters used to model the geometry are shown in Table 5. Assuming that the overall fiber volume fraction within the bundle, v_{f}, is known from experimental measurements, the fiber volume fraction within the bundle, $v_{f p}$, and the packing fraction of yarns, $v_{f p}$, have to be adjusted to satisfy the relation:

$$
v_{f}=v_{f b} \times v_{f p}
$$

The experimentally observed in-plane elastic properties are shown in Table 6 along with "NDPROP" calculated values.

The measured data were obtained from the experimental program conducted at NASA, Langley. Both tabbed and untabbed specimens were used for the tension test. Gage section failures were consistently observed only for the untabbed specimens. Hence the reported tensile strengths are the averages of the untabbed specimen data. The tensile moduli have been calculated using both the untabbed and tabbed specimen data. The compression test data reported were obtained from the "Short Block Compression Test" method. The $\pm 45^{\circ}$ Tension test was used to determine the fabric in-plane shear properties. The calculated tensile moduli are about an average of 12\% higher than measured values for the Oxford, 5 and 8 harness satin weaves. However, a large discrepancy (30%) exists in the case of the plain weave. This may have been caused by either or both of the following factors:

1. The plain weave sample may be of poor quality. C-scans of the material indicated damaged areas and the photomicrographs indicated areas with voids and resin rich areas.
2. The higher crimp in the plain weave may cause the measured values to be lower than predicted by the Upper Bound. Although the analytical model accounts for the crimp in the woven fabrics, the Upper Bound assumption tends to minimize the effects of high cross-over angles. The Upper Bound predictions thus represent properties attainable from good quality woven fabrics (fewer voids and damaged areas) having small amounts of yarn waviness.

For the plain weave, the tensile and compressive moduli are not significantly different. For the other weave styles, the compressive moduli are lower by an average of approximately 13%. The analysis does not distinguish between tensile and compressive moduli. A possible reason for the lower measured compressive moduli lies in the inherent complexity of compression testing of composites. This complexity arises because the test fixture and specimen must be designed so that buckling must not occur (unsupported length must be small) and the gage section stress state must be uniform and uniaxial (gage section must be sufficiently far from the supports).

The in-plane shear moduli are in good agreement for the five and eight harness satin weaves. For the Oxford weave, a balanced $\pm 45^{\circ}$ lay-up was not used, hence the data are not reported.

Comparisons between calculated and measured in-plane tensile, compressive and shear strengths of the same biaxial fabrics are shown in Table 7. Both the initial and ultimate failure stresses are reported in the table. It can be observed that the predicted tensile first failure occurs at a stress of approximately 70 ksi for all four fabric styles. For the 5 HS and 8HS fabrics, the measured strengths are in good agreement with the predicted final failure stress (-110 ksi). However, for the plain weave and oxford weave, the measured strengths are closer to the first failure stresses. A possible explanation is that the higher amounts of crimp in these two fabric styles cause matrix dominated failures to be more severe by not allowing the loads to get effectively redistributed among the fibers.

In the case of predicted shear strengths, the first failures are matrix dominated failures. Since the shear loads have to be primarily carried by the matrix in orthogonal biaxial fabrics, subsequent failures are also matrix failures and occur at stresses even lower than the first failure stress. Therefore the first failure stress represents the ultimate strength also since the fabric can no longer carry shear loads after the first matrix failure has occurred. The measured and predicted shear strengths are in good agreement, as can be observed from Table 7.

In the case of predicted compressive strengths, the first failure in each case is a fiber failure. Thus the initial and ultimate compressive strengths are the same for each of the four fabric styles. The results are in good agreement for the 5 HS and 8 HS weaves. The predicted values are much higher than the measured values for the plain weave and Oxford weave (warp direction). The reason for the large discrepancy can be explained in the following manner. For conventional tape laminates numerous studies have been carried out, aimed at deriving analytical expressions for the axial compressive strengths of unidirectional fiber bundles. These strengths are then used in laminate failure analyses. The axial compressive strength can be analytically shown to be equal to the unidirectional composite axial shear modulus. Measured strengths have consistently been much lower. It is postulated here that the discrepancy may be explained by a decrease in the matrix shear modulus because its proportional limit has been exceeded. For an absolutely straight fiber bundle under compression, the axial stress in the matrix is low due to the large ratio of fiber to matrix axial Young's modulus. Also, the shear stress in the matrix is zero.

Because of imperfections associated with fabrication, small amounts of waviness exist in the fibers (for conventional tape laminates). When these fibers are under compression, the states of stress in the matrix are a combination of normal and shear stresses. The shear stresses become significant even at small angles of waviness and cause the matrix to yield resulting in low compressive strengths. Accordingly, the allowables that are used for conventional laminate strength analyses reflect this knockdown.

Additional knockdowns in strength can occur if the crimp in the fabrics is high. This is because the matrix shear stresses are a strong function of the off-axis angle and may become more significant than the normal stresses in terms of causing the matrix to yield even at off-axis angles as low as
5°. Therefore, the compressive strength allowables that go in as input to the stress analysis have to be calculated as a function of the off-axis angle. More work is required in this area so that the postulate can be formalized and incorporated into the computer code.

Iosipescu shear tests were done on the fabrics at the University of Wyoming. Results are presented in reference 19. Both in-plane and transverse shear moduli and strengths are presented in Table 8 along with the predicted values. The predicted shear moduli in all cases are higher than the measured values by about 20-30\%. The calculated in-plane shear strengths, however, under predict the measured values by about 20\%. The predicted transverse shear strengths are in reasonable agreement with data. For in-plane moduli and strengths, the $\pm 45^{\circ}$ tension tests are generally more reliable than the Iosipeseu shear tests and those results were in better agreement with calculations, as indicated in Tables 6 and 7.

Triaxial Weave Elastic Properties and Strengths

The parameters used for modeling the T-300/934 and Kevlar/934 triaxial weaves are shown in Table 9. The comparisons between calculated and measured properties and strengths are shown in Table 10. The triaxial woven fabrics had essentially the same crimp as the plain weave biaxial fabrics discussed above and in addition had more resin rich areas (low values of v_{f}). The following conclusions may be made from the data:

1. Measured tensile and compressive moduli are almost identical. This is in agreement with the analytical model assumptions of equal tensile and compressive moduli.
2. Both moduli and strengths in the fill direction are higher than corresponding warp direction values by about 10-15\%.
3. Measured compressive strengths are significantly higher than the tensile strengths (about 16-20\%).
The comparisons between predicted and measured values indicate that the agreement is not as good as for biaxial weaves. The analysis predicts higher ultimate tensile and compressive strengths in the warp direction as compared to the fill direction, but measured data indicate otherwise. A possible explanation for the discrepancy in the tensile strength stems from the fact that the y-direction load is directly along the fiber; therefore,
failure in this direction only occurs when axial fiber breakage occurs. In the warp direction, matrix failures may have caused material degradation leading to premature failures. The analytical model for triaxial weaves thus needs some modification and improvement.

Biaxial Weave Toughness Properties

In order to evaluate toughness properties of fabric composites, NASA Standard Toughness tests (reference 20) were done on the various types of fabrics. The results of the compression after impact tests are shown in Table 11. Results for the equivalent tape lay-up are also presented in the table. The results of the other toughness tests (Double Cantilever Beam, Open Hole Tension and Open Hole Compression) are shown in Table 12. Results for the corresponding tape lay-ups were obtained from reference 22 and are also presented in the same table.

The toughness tests generally indicated that fabrics possess better toughness characteristics as compared to conventional tape laminates as evidenced by higher strengths and ultimate strains for the "Compression after Impact" test and higher values of interlaminar fracture toughness (G_{IC}) as measured by the "Double Cantilever Beam" test. It was originally thought that open hole tension and compression strengths for fabrics may be higher than those for equivalent tape laminates because of the increased delamination resistance that the fabrics are likely to provide. It is possible that the increased resistance was not observed because the weave patterns were fairly coarse (small amounts of intersections of warp and fill yarns per square inch). Inhibition of the initial failures through the use of finer weaves was demonstrated in another research program, reference 6 .

Advanced Weaves

As described in the section "Development of Advanced Weaves", some "Building Block" configurations were defined during the course of this program. The first configuration from this category is termed the "Auxiliary Warp Reinforcement Weave" and consists of two nested configurations -.- "Nested face-ply" and "Nested Internal-ply" (see Figure 14).

Elastic property and strength calculations were made in order to assess the potential of these woven configurations.

Auxiliary Warp Reinforcement Weaves

Calculations were made based on the following specifications:

1. 3000 filaments/yarn;
2. Yarn count of 18 for the basic plain weave, and
3. T-300/Epoxy material.

The first task was the identification of the repeating volume element with realistic dimensions based on the photomicrographs and measured volume fractions. It was assumed that the area fraction of the fiber within the yarn was 70%.

The nested face-ply configuration contains within its repeating element, 8 yarns each in X ard Y directions constituting the 18×18 plain weave, 6 circular section yarns (assumed straight) traveling in the X direction and 6 non-circular auxiliary yarns in the Y-direction holding the other yarns in place. The lengths and direction numbers of the plain weave were obtained based on the yarn count, cross-over angle and yarn cross-sectional area. Similar calculations were done for the auxiliary yarns, and curved segments were approximated by short straight segments to determine volume fractions and yarn orientations. The resulting set of direction numbers and volume fractions were fed into "NDPROP" in order to get an Upper Bound prediction on elastic properties and strengths.

A similar procedure was used to calculate properties of the nested internal-ply configuration. The repeating element in this case contains the same 8 yarns of the basic plain weave in the X and Y directions but contains 12 circular straight yarns in the X-direction and 12 auxiliary yarns in the Y-direction.

The materials that were tested were the nested face-ply, the 4-ply building block and the l2-ply building-block configurations. The 4-ply fabric consists of 1 nested face-ply and 1 nested internal-ply. The 12-ply fabric material consists of 1 nested face-ply and 5 nested internal-plies. The properties of these building-block configurations were generated from
the basic face-ply and internal-ply properties. The results of these calculations are shown in Table 13. The comparison between predicted and measured values from tests conducted on these materials are shown in Table 14. In general, the measured tensile moduli and strengths and the measured compressive moduli are 20-30\% lower than the calculated values. The major discrepancy is in the compressive strength values.

Because of these low values a new design of auxiliary warp weaves was developed based on the following considerations: (1) elimination of the resin-rich pockets as far as possible and (2) use of yarns with longer float lengths, minimizing crimp while retaining the basic features of the original building-block configuration. The following section contains the details of the Revised Design Auxiliary Warp reinforcement weaves.

Revised Design Auxiliary Warp Reinforcement Weaves

The building-block for the advanced weave also consists of the faceply and internal-ply configurations. The modified face-ply design is shown in Figure 26. It can be observed that the basic weave corresponds to a four harness satin in the fill direction and a five harness satin in the warp direction. As before, a thread count of 18 per inch and 3000 filaments/yarn were assumed for the calculations.

The dimensions of the repeating element are 4Lxlol as can be seen from Figure 26. Different cross-sectional views of the face-ply and internal-ply configurations at various sections are shown in Figures 27 and 28, respectively. The repeating element contains two each of the yarns shown in sections $B-B, C-C, D-D$, and $E-E$, and one each of the yarns shown in sections $A-A$ and $F-F$, see Figures 27 and 28 . The nested face-ply and nested internal-ply configurations are shown in Figure 29. Property calculations were made by assuming a volume fraction of fiber within the yarn of 70%. The "NDPROP" Upper Bound results for the Revised Design Auxiliary Warp nested face-ply and nested internal-ply are shown in Table 11. Also listed are the properties for a 4 -ply nested lay-up consisting of two face-plies and two internal-plies, shown in Figure 29 . Test data on the revised weave design are awaited.

EVALUATION OF POTENTIALS FOR PERFORMANCE OF WOVEN FABRIC REINFORCEMENTS

Evaluation of the potentials for performance of woven-fabric reinforced composites is complicated by the fact that both strength and stiffness in various directions (including the thru the thickness direction) are variables dependent on the weave design. In general, therefore, as the following results will emphasize, trade-offs are needed among the pertinent variable properties to define most appropriate weave configurations. Likewise, the methodology of evaluation must be extended to include additional pertinent design parameters such as thru the thickness reinforcement, as will be shown.

APPROACH

The approach used to evaluate the potentials of woven reinforcement constructions was to utilize the NDPROP computer code to calculate properties for typical composites, with parametric variations of reinforcement configurations, and relate the results to the familiar standard, -7075-T6 aluminum alloy. This baseline material has much to recommend it beside familiarity. For one thing, it is hard to beat, particularly, as will be seen, for three-dimensional properties. Thus composites offering potentials superior to the aluminum can be considered of interest. The fact that wovens of $\mathrm{T}-300$ can indeed out-perform aluminum for many applications will be repeatedly demonstrated in the following evaluations.

Throughout these calculations the assumption is made that the woven (or braided) constructions are comparable to multi-harness weaves, having minimal crimp and accompanying maximum properties. (Similar assumptions have been employed successfully for 3-D carbon-carbon composites, for example, reference 21). Thus the potentials for performance are represented.

EVALUATION PROCEDURES

A wide range of reinforcement configurations, both $2-D$ and $3-D$, was evaluated, as follows:

2-D (1) $0^{\circ} / 90^{\circ}$, of varying proportions
(2) $\pm \phi^{\circ}$
(3) $\pm \phi^{\circ} / 90^{\circ}$
(4) $0^{\circ} / \pm \phi^{\circ}$

3-D (1) The 2-D constructions with thru the thickness reinforcement.
(2) Omniweave
(3) Nested constructions

Primary constituents considered were T-300 and Kevlar 49 filaments in a 5208 resin matrix. Volume fractions were 60% throughout.

In accordance with the results found in the section "COMPARISONS OF ANALYSIS AND EXPERIMENT", with the assumption that woven constructions of minimal crimp are accessible, as they in general appear to be, the upper bound NDPROP analysis was employed for the evaluation of elastic properties. For strength, first failure rather than that for cumulative damage was the criterion, as representative of conservative design practice for repeated loading.

EVALUATION PARAMETERS

Tension

The important design parameters for tensile applications were determined to be:
(1) Tensile strength/density ratio $\frac{\sigma}{\rho}$ - a direct measure of weight of material required to carry a tensile load.
(2) Tensile stiffness/density ratio $\frac{E_{x}}{\rho}$ - a prime measure of weight of material required to limit the extension of a tensile element to some desired value.
(3) Shear stiffness/density ratio $\frac{G y}{\rho}$ - a measure of weight of material required to limit distortion of an element subject to shear.

Abstract

Of these parameters (1) and (3) are generally most important. For tensile applications, the tensile load to be carried is the essence of the design. For many applications, - aircraft wings, helicopter rotor blades, propellers, etc., shear stiffness, relating to flutter and divergence, is also of major importance. Axial stiffness, relating to overall bending of the wing for example, may also be a design consideration, particularly for composites, because in general as the configuration is changed to increase shear stiffness the axial stiffness decreases, as the following plots will show.

Compression

The parameters for compression are similar to those for tension, but require an additional one to account for the possibility of compressive buckling, as follows:
(1) Compressive strength/density ratio $\frac{-\sigma_{x}}{\rho}$ - a direct measure of weight of material requifed to carry a compressive load.
(2) Compressive stiffness/density ratio $\frac{E_{X}}{\rho}$ - in general equal to $\frac{E_{X}}{\rho}$ for tension.
(3) Shear stiffness/density ratio $\frac{G x y}{\rho}$ - in general equal to $\frac{G x y}{\rho}$ for tension.

Additionally,
(4) Compressive buckling Indicator Number I_{P}^{*} - a value combining the material strength and stiffness properties to measure weight required to carry the applied load. Different formulations are required (see ref. 12) depending on whether a plate (I_{P}^{*}) or shell ($\mathrm{I}_{\mathrm{S}}^{*}$) construction is involved. Herein only $\mathrm{I}_{\mathrm{P}}^{*}$ will be used; results for I_{S}^{*} while numerically different would lead to identical conclusions. The formulation for I_{P}^{*} is

$$
I_{P}^{*}=\frac{E_{P}^{1 / \sigma_{\sigma}}{ }_{c u}^{1 / 2}}{\rho},\left(\frac{i n^{5}}{1 b}\right)^{1 / 3}
$$

where:
E_{P}, plate buckling modulus, $=\frac{1}{2} \frac{\sqrt{E_{x} E_{y}}}{1-\sqrt{\nu_{x y}{ }^{\nu} y x}}+G_{x y}$
with E_{x}, E_{y} longitudinal and transverse extensional moduli, psi
$\nu_{x y}, \nu_{y x}$, in-plane Poisson's ratios
$G_{x y}, i n-p l a n e$ shear stiffness, psi
$\sigma_{c u}$, compressive strength, psi
ρ, density of material, pci

EVALUATIONS

Tension

Evaluations for tensile applications are presented in the format used in Figure 2 for the various materials and constructions considered. In every case the ultimate tensile strength/density ratio $\frac{\sigma x}{\rho}$ is plotted against $\frac{G x y}{\rho}$, the shear stiffness/density ratio and $\frac{E_{x}}{\rho}$ the axial stiffness/density ratio. Curves for shear stiffness are solid; for the axial stiffness dashed. Tick marks on the curves identify specific proportions, as indicated.

Biaxial $0^{\circ} / 90^{\circ}$ Configurations

Evaluations begin (Figure $30 \& 31$) for a simple, biaxial configuration, representative of 5 harness or 8 harness satin weave, with various proportions of reinforcement in the warp and fill directions (see the vertical curve to the left on each of the figures). Such variations in proportions might be produced, for example, simply by changing the weft yarn count while holding the warp yarn count constant. The figures show that the simple $0^{\circ} / 90^{\circ}$ configuration has a minimal shear stiffness/density ratio (25\%
of that of aluminum, $15 z$ for Kevlar) for all proportions, but enormous (up to 750%) improvement in strength/density ratio.

Biaxial Configurations.

For many, perhaps most, applications, shear stiffnesses greater than those attained by the biaxial $0^{\circ} / 90^{\circ}$ reinforcement are required. Braided biaxial constructions making angles $\pm \phi^{\circ}$ to the axial x-direction can provide such increases, as shown on Figures 30 and 31 . For the $\mathrm{T}-300$ braid at the same strength/density as aluminum the shear stiffness/density ratio is approximately 225% that of aluminum. For Kevlar the ratio is 130%. Strengthwise, for the same shear stiffness/density as aluminum the gains are even greater, being approximately 330 for T-300 and 80% for Kevlar.

Triaxial Configurations.

Shear stiffnesses greater than for the $0^{\circ} / 90^{\circ}$ configuration are also obtainable with triaxial weaves in either $0^{\circ} / \pm \phi^{\circ}$ or $\pm \phi^{\circ} / 90^{\circ}$ configuration. Rather surprisingly, the $\pm \phi^{\circ} / 90^{\circ}$ arrangement is generally superior to the $0^{\circ} / \pm \phi^{\circ}$ configuration but there are exceptions for the latter, as the following comparisons bring out.

Numerical comparisons taken from figures 32-35 with nominal aluminumalloy properties, are indicated in the table below

(1) The superiority of the braid for high shear stiffness ($\pm 45^{\circ}$ is a maximum).
(2) Deficiency regions in the Kevlar construction due to the compressive weakness of Kevlar. In this case, Poisson contractions induce compressive failures in the 90° filaments.
(3) Minor but not substantial superiority of the $\pm \phi^{\circ} / 90^{\circ}$ configuration.

Both the $\pm \phi^{\circ} / 90^{\circ}$ and the $0^{\circ} / \pm \phi^{\circ}$ configurations can be made with various proportions as shown in figures 32 to 35 . For the $\pm \phi^{\circ} / 90^{\circ}$ configuration, highest values of $\frac{\sigma_{x}}{\rho}$ are achieved with most material in the $\pm \phi^{\circ}$ direction and also highest values of $\frac{G x y}{\rho}$ are achieved with the highest fractions of material in the $\pm \phi^{\circ}$ direction (Figs. $32 \& 33$). The reverse is true for $\frac{\sigma_{\mathrm{x}}}{\rho}$ for the $0^{\circ} / \pm \phi^{\circ}$ cases (Figs. $34 \& 35$), hence specific comparisons such as those in the table above may be misleading unless truly optimized proportions of each approach for the application have been evaluated. The use of envelope curves such as those of figure 36 provides such optimization. From these envelopes it is evident that the $\pm \phi^{\circ} / 90^{\circ}$ configuration is indeed superior to the $0^{\circ} / \pm \phi^{\circ}$ configuration except for the restricted area encountered in comparisons with aluminum for which ϕ approaches 45° and in which the curves come together.

Effect of Use of First Failure Criterion in Evaluations

As previously noted, the failure criterion used throughout these evaluations was that of first failure. In order to determine whether the use of this criterion unduly penalized the composite constructions, as for example in relation to their performance compared to aluminum, a few exploratory calculations were made using the cumulative damage failure criterion. Typical results are shown in Figure 37 for a $\pm \phi^{\circ} / 90^{\circ}$ construction. As would be expected, the final failure criterion is shown to raise the value of $\frac{\sigma}{\rho}$ for given values of $\frac{G y}{\rho}$ and $\frac{E_{x}}{\rho}$. Differences are not substantial - on the order of 10%. The conservative use of the first failure criterion for these evaluations appears to be appropriate.

Implications of Analytical Methodology Used (NDPROP, Equations of Appendix C) on Effects of Thru the Thickness Reinforcement

The addition of thru the thickness (TTT) reinforcement to planar reinforcement configurations is shown to be twofold: (1) it detracts from the volume fraction available for in-plane reinforcement, and (2) it introduces the possibility of new failure modes associated with the transverse (TTT) direction. The first of these effects is straightforward. One percent taken away from unidirectional (axial, 0°) stiffening and used TTT reduces the 0° stiffness slightly less than 1% (0.875% for $T-300 / 5208$ ($V_{f}=0.6$) but increases the TTT stiffness by much more than 1% (12.5% for the same construction). Surprisingly, the in-plane transverse (90°) stiffness is also increased (by 1.72% due to Poisson's ratio effects). (These changes are not in contradiction to the theorem that the sum of the stiffness $\$$ in the stiffness matrix for the material is invariant; 1% of the original axial stiffness is a quantity which is the same order of magnitude as 12.5% of the original transverse stiffness.) The effect on strength, however, can be substantial; instead of the 330,000 psi tensile strength of the unidirectional composite, the TTT configuration fails in a transverse mode at 220,000 psi. (Starting with a balanced $0^{\circ} / 90^{\circ} \mathrm{T}-300 / 5208, \mathrm{v}_{\mathrm{f}}=0.6 \mathrm{con}-$ figuration, removing 1% of the in-plane reinforcement, and adding it TTT, decreases both the 0° and 90° in-plane stiffnesses 0.66% and increases the TTT stiffness 11\%).

Various combinations of woven reinforcements were investigated to evaluate the effects of thru the thickness reinforcement. Typical results are shown in Figures 38-41.

For both T-300 and Kevlar constructions the effects of adding thru the thickness reinforcements on resulting composite properties (both stiffness and strength) are shown to be orderly and not disproportionate to the percentage TTT addition as long as new failure modes are not encountered. New failure modes were encountered for the $0^{\circ} / \pm \phi^{\circ}$ configurations in both $T-300$ and Kevlar for proportions having mostly 0° reinforcements. Accordingly calculations for strength of these configurations yielded substantially lower stresses than for the same configurations without TTT (see particularly figures 40 and 41 for low values of $\frac{G x y}{\rho}$ and $\frac{v_{f}}{v_{f}}$).

If new failure modes are not introduced by TTT reinforcements the relationships between losses in tensile strengths and increases in thru the thickness reinforcement can be summarized on a simple plot of $\Delta \sigma_{X_{\max }} \quad \mathrm{vs} . \mathrm{v}_{\mathbf{f}_{\mathbf{z}}}$ (figure 42).

The figure shows that if the losses in tensile strength are to be kept under ten percent, even for simple, constant failure modes, the volume fraction of TTT reinforcement must also be kept below 10% of the total reinforcement.

Compression

Evaluations for compressive applications are presented in a similar format to that used for tension, i.e. plots of $\frac{-\sigma x}{\rho}$ vs. the parameters $\frac{G x y}{\rho}$ and $\frac{E_{X}}{\rho}$ with the curves for $\frac{-\sigma}{\rho}$ vs. $\frac{E_{X}}{\rho}$ as dashed lines indicative of the lesser role of E_{X} in most cases to that played by the shear stiffness $G_{X y}$. To evaluate buckling resistance, curves are also plotted of I_{P}^{*}, as discussed in the section on "EVALUATION PARAMETERS".

Biaxial $0^{\circ} / 90^{\circ}$ and $\pm \phi^{\circ}$ Configurations.

For the simple biaxial configurations in compression the evaluations (figures 43 and 44) depict similar characteristics to those found in tension. The $0^{\circ} / 90^{\circ}$ configuration is characterized by low shear stiffnesses; the $\pm \phi$ configurations have reasonable combinations of compressive strength/density and shear stiffness/density - better than the aluminum alloy for T-300/Epoxy. The Kevlar suffers from its low compressive strength, and is not competitive in any of these simple configurations.

Evaluations with account taken of buckling characteristics utilizing I_{P}^{*} as the measurement parameter in place of $\frac{\sigma^{\prime}}{\rho}$ (figure 45) show that the $\pm \phi^{\circ}$ configuration can potentially be made in a plate structure to carry the same compressive loading, at the same shear stiffness, as aluminum alloy for $3 / 8$ the weight.

Kevlar was not evaluated for use in plates in compression because its low compressive strength does not make it attractive for such application.

Triaxial Configurations.

As noted for tension, the use of triaxial weaves, either $0^{\circ} / \pm \phi^{\circ}$ or $\pm \phi^{\circ} / 90^{\circ}$, can provide both high compressive strength/density ratios and high shear stiffness/density ratios, as the specific values (taken from figures 46 and 47) in the table below reveal.

Property Aluminum alloy

T300/5208
$\pm \phi / 90$. $0.1 \pm \phi \circ$
$40,000,000$
$40,000,000$
$40,000,000$
$2,900,000^{(2)} \phi=20$ 。
$2.500,000$ = 25 。
in. 600,000
$2,900,000$ e $\phi=20$.
$2,900,000$ = 20.

600,000
600,000

As previously found for tension, the table shows (1) superiority (though less than in tension) of the braid for high shear stiffnesses, and (2) minor but not substantial superiority of the $\pm \phi^{\circ} / 90^{\circ}$ configuration over the $0^{\circ} / \pm \phi^{\circ}$ configuration.

Here again, however, as in tension, specific comparisons may be misleading. The best basis for evaluation appears to be by comparisons of the best against the best, using the most rigorous comparative parameters. Accordingly, envelope curves of I_{P}^{*} vs. $\frac{G_{X y}}{\rho}$ and $\frac{E_{X}}{\rho}$ were drawn for the various configurations and used as the basis for overall evaluations, as shown in Figure 48. The results of these overall evaluations are summarized below.
(1) The triaxial $\pm \phi^{\circ} / 90^{\circ}$ weave provides superior performance in compression as measured by higher values of the Indicator Numbers I_{P}^{*}, for the range of shear stiffnesses achieved for $0^{\circ}<\phi^{\circ}<45^{\circ}$, as compared to (a) $0^{\circ} / 90^{\circ}$ biaxial weaves, (b) $\pm \phi^{\circ}$ biaxial braids, (c) $0^{\circ} / \pm \phi^{\circ}$.
(2) The superiority of the $\pm \phi^{\circ} / 90^{\circ}$ weave is greatest at shear stiffnesses corresponding to those achieved by the weave at intermediate angles of ϕ, as in the range $20^{\circ}<\phi^{\circ}<30^{\circ}$. The superiority diminishes to zero as ϕ approaches 0° or ${45^{\circ}}^{\circ}$.
(3) The plot of figure 48 forms a basis for comparison of performance among various other materials and configurations. (Such comparisons are made and reported in the section "POTENTIALS FOR PERFORMANCE".)

HYBRIDS

Woven hybrid reinforcements are perhaps unduly intriguing because they are easy to make. In both biaxial and triaxial construction the use of different materials in warp and fill imposes no difficulty, indeed in some cases may make the weaving easier.

From a performance standpoint the prime motivation for hybrid constructions relates to the thru the thickness reinforcement problem. The use of fibers of higher "toughness" such as nylon or Kevlar appears appropriate for investigation even though as yet the relative roles of thru the thickness strength, stiffness, and toughness have not been adequately characterized. Further, the addition of any thru the thickness running element must be evaluated in terms of its possible influence on in-plane performance.

In-plane hybrids also deserve consideration. The basis for hope that some hybrid combination might prove more effective than either constituent follows some such pattern as the following: (1) the transverse stiffnesses of material (b) are much less than those of material (a) therefore, the use of (b) transversely will not as readily lead to premature cracking in tension as the use of (a) transversely, - so a combination of (b) with (a)
should be better than (a) alone. While there may be merit to this argument, detailed analysis reveals that the benefits are limited, as will be shown.

Analyses were made of various hybrid combinations, following the same approach used for the performance evaluation of individual materials. In all cases the materials studied were T-300 and Kevlar-49. On all figures, tick marks on the curves denote angles of $15^{\circ}, 30^{\circ}$, and 45°, as in Figure 2.

EVALUATIONS OF HYBRIDS

Tension

Biaxial $0^{\circ} / 90^{\circ}$ Weaves

Evaluations begin (fig. 49) for a simple biaxial weave with T-300 in the warp (0°) direction and varying proportions of Kevlar-49 in the fill. (The reverse hybrid having Kevlar in the 0° direction was not considered because of the adversely high transverse stiffness of $T-300$. The damaging effect of this characteristic will be considered in the section "Thru the Thickness Reinforcements" to follow.) Figure 49 shows clearly the desired improvement in tensile properties for the hybrid over those for either T 300 or Kevlar alone. For both materials by themselves the smallest fraction of transverse fiber induces premature cracking whereas the Kevlar transverse fiber accommodates the low strain of the $0^{\circ} \mathrm{T}-300$ environment.

With this encouraging result, the next question to be considered is "Can this same improvement be found in triaxial weaves providing increased shear stiffnesses compared to those for the biaxial constructions?"

Triaxial $\pm \phi^{\circ} / 90^{\circ}$ and $0^{\circ} / \pm \phi^{\circ}$ Weaves

Answers to the above question are explored in Figure 50 to 55 . The overall answer is a negative one, for various reasons, such as:
(1) Putting a 90° Kevlar into a $\pm \phi^{\circ} / 90^{\circ}$ configuration ($\pm \phi^{\circ}$ being T300) introduces a new failure mode, - compression in the Kevlar due to Poisson contraction, - with substantial strength reductions (Figure 50).
(2) Putting a 90° T-300 into a $\pm \phi^{\circ} / 90^{\circ}$ configuration ($\pm \phi^{\circ}$ being Kevlar) aggravates the transverse failure mode caused by the 90° element (Fig. 51).
(3) Putting a 0° Kevlar into a $0^{\circ} / \pm \phi^{\circ}$ configuration ($\pm \phi^{\circ}$ being T-300) does not do much harm, but it does not do any good either (Fig. 52).
(4) Putting a 0° T-300 into a $0^{\circ} / \pm \phi^{\circ}$ configuration ($\pm \phi^{\circ}$ being Kevlar) does do much good, but not as much as putting $T-300$ all around (Fig. 53, and c.f. Fig. 34).
(5) Comparisons of the best - the envelope curves for hybrids and nonhybrids of both triaxial weaves show that the $\pm \phi^{\circ} / 90^{\circ} \mathrm{T}-300$ is the best followed closely by the $0^{\circ} / \pm \phi^{\circ} \mathrm{T}-300$ (Figs. 54 and 55). The $\pm \phi^{\circ} / 90^{\circ}$ Kevlar is the poorest, again due to the compressive failures induced in the 90° elements. The hybrids fall in all cases between the Kevlar and the T-300.

Thru the Thickness Reinforcements

Typical results of evaluations of the effects of using Kevlar reinforcements thru the thickness are shown by comparisons of Figures 56 and 57. Figure 56 shows losses in performance due to additions of $T-300$ thru the thickness reinforcement to a triaxial $0^{\circ} / \pm \phi^{\circ}$ configuration. Figure 57 shows lesser losses for the use of Kevlar TTT. Figure 58 and 59 indicate similar results when the base configuration is $\pm \phi^{\circ} / 90^{\circ}$. Kevlar appears especially attractive as a TTT reinforcement material.

Compression

In compression, the evaluation results show that, as in tension, Kevlar has a role to play as a thru the thickness reinforcement but not as a booster of in-plane performance. Because of the similarity of these results to those for tension they will be summarized only briefly here before going
on to treat the more complex problem not encountered in tension, of combined strength and buckling resistance.

Biaxial $0^{\circ} / 90^{\circ}$ Weaves

Hybrid combinations of $\mathrm{T}-300$ filaments in the warp (0°) direction and Kevlar in the fill (90°) direction are represented in Figure 60. No merit is evident for the hybrids compared to $100 \% \mathrm{~T}-300$.

Triaxial $\pm \phi^{\circ} / 90^{\circ}$ and $0^{\circ} / \pm \phi^{\circ}$ Weaves

For the $0^{\circ} / \pm \phi^{\circ}$ configuration the Kevlar is least damaging if used in the $\pm \phi^{\circ}$ direction filaments (Figs. 61 and 62). For the $\pm \phi^{\circ} / 90^{\circ}$ configuration (Figs. 63 and 64), Kevlar in the 90° direction is nearly as effective as $\mathrm{T}-300$, but used in the $\pm \phi^{\circ}$ directions it destroys the usefulness of the configuration. Because of the potential increased toughness of Kevlar, a $\pm \phi^{\circ}(\mathrm{T}-300) / 90^{\circ}$ (Kevlar) hybrid may be of interest. The penalty to be paid ${ }^{-\sigma}{ }_{x}$
in terms of potential $\frac{x}{\rho}$ values is 10% to 15% as shown by the envelope curves of figure 65. Losses if used in the $0^{\circ} / \pm \phi^{\circ}$ configuration (Fig. 66) are substantially higher.

Thru the Thickness Reinforcement

The most appropriate use for Kevlar as a hybrid with fibers like T-300 appears to be in the thru the thickness direction. Here the losses for the addition of small volume fractions of thru the thickness Kevlar are minimal (Figures 67 and 68) and less than those for all T-300 constructions (compare Figs. 8 and 67, for example).

Evaluations on the Basis of Indicator Numbers

If shear stiffnesses greater than one fourth those of aluminum are required so that a simple biaxial configuration is inadequate (Fig. 69), the only hybrids competitive with 100% T- 300 are the $\pm \phi^{\circ} / 90^{\circ}$ configuration with Kevlar in the 90° direction (Fig. 70). Even here the best has the least Kevlar. The $0^{\circ} / \pm \phi^{\circ}$ at proportions giving shear stiffness/density ratios
about equal to aluminum are indeed much lighter than aluminum (Fig. 71), but lesser than the $\pm \phi^{\circ} / 90^{\circ}$ configurations. As is to be expected, the mostly Kevlar hybrids (Figs. 72 and 73) are not competitive for these compressive loading with the mostly T-300 hybrids (Figs. 70 and 71).

Thru the thickness, however, Kevlar does a most effective job (Fig. 72). Reductions of only approximately 5% and 10% in I_{P}^{*} values accompany TTT Kevlar reinforcements in planar $\pm \phi^{\circ} / 90^{\circ} \mathrm{T}-300$ weaves for 10% and 20% TTT Kevlar.

DEVELOPMENT OF ADVANCED WEAVES

Development of advanced weaves had the following two principal objectives superposed on the ongoing one of providing improved in-plane properties (compression, shear), namely:
(1) Weaves to facilitate enhancement and control of thru the thickness properties.
(2) Weaves to facilitate fabrication of composites for high load intensities (thick constructions), particularly weaves providing for tapering thickness to accommodate varying load intensities.
(3) Fiber architectures that inherently improve damage tolerance.

Three advanced weave concepts have been developed to meet the foregoing objectives. These weaves derive in part from the analyses described in the previous sections, in part from supporting studies and tests at the Langley Research Center, and in part from developments in related studies (refs. 8 and 22). These concepts are the auxiliary warp (or "Bumpy Fabric") concept (Patent Applied for), the Stitchbase Weave, and the Multi-layer Triaxial, as described below.

BUMPY FABRICS

The Bumpy Fabric concept is simple. As illustrated in Figure 75 it proposes nesting configurations that overlap thru the thickness to provide increased interlaminar interface area and provide that separating forces be resisted by shear as well as tension. Such a configuration also makes accessible the same flexibility for tapering thickness that ordinary laminated construction provides.

While the concept is simple, the execution is not. First trial weaves (Figs. 76 and 77), adequately bumpy appearing on paper, turned out to be not very bumpy as fabricated. Further the intentionally widely spaced auxiliary warps (Fig. 77) did not spread laterally sufficiently during autoclave curing to fill the open spaces allotted for them. Voids and resin-rich areas that were created led to premature failures, especially in compression. Even so, lateral impact tests of bumpy fabric laminates using
these initial samples did appear to show reduced areas of damage compared to comparable conventional laminates.

To increase the bumpiness, a revised design was made (Fig. 78). Again, the bumps appeared greater in cross-sections on paper than as woven. Tests have not yet been performed on the revised design material.

Because of the continued lack of bumpiness of the revised design, a concept similar to a blade-stiffened construction is proposed (Figure 79). The auxiliary warps are woven vertically, perpendicular to the base fabric, as shown. With the addition of a double thickness "bulb" to the tops of the blades, a truly interlacking construction is achieved. As the crosssectional view reveals, the fill yarns that tie in the bumps truly provide thru the thickness reinforcement. This design has yet to be fabricated.

STITCHBASE WEAVES

In a study related to this program (ref. 7), Dexter and Funk found notable improvements in thru the thickness properties of laminates stitched together with closely-spaced Kevlar stitches. About the only drawback to this stitching approach appeared to be damage induced by stabbing the stitching needles through the reinforcing yarns. To overcome this drawback a "Stitchbase" woven construction is proposed. Examples of such weaves are shown in Figure 80.

Triaxial weaves can be woven with regularly spaced holes in a wide variety of configurations. The necessary accuracy of yarn spacing of the Barber-Colman type triaxial loom together with the high Young's modulus of composite reinforcement yarns and the "locked intersection" characteristic of the Stitchbase Weaves insures that such construction can be accurately stacked with holes matching holes. Thus the potential is created for stitching through the holes without yarn damage. Furthermore, technology is available, as from the computer industry, for positioning the stitching needles (e.g. the soldering or welding heads for computer chip connections) with precision.

No stitchbase weaves have been made, however, their development is recommended.

Recent exploratory development of triaxial weaving equipment with multiple harnesses (like a biaxial Dobby loom) opens new possibilities for triaxial fabrics. Samples of the Substrate Weave with auxiliary warps (fig. 81) have already been woven (in ref. 8). The next step is weaving of a Substrate Weave with Bulbous Blade auxiliary warps (fig. 82). Constructions like this have the potential to provide thru the thickness reinforcement with tapered thickness constructions (as with ordinary laminates, by changing number of plies), together with multi-axial yarns for improved shear stiffness compared to biaxial weaves.

Thick triaxial constructions can also be woven on the multi-harness, Barber-Colman type machine, providing a multi-layer fabric with thru the thickness running yarns as shown in Figure 83. While tapering thickness could probably be programed into the weaving, it would have to be done so specifically for the end application and would not have the generality of applicability of the Bumpy constructions.

THE PERFECT WEAVE

A corollary to the development of the multi-harness triaxial loom is the potential for weaving triaxially interwoven triaxial constructions such as that shown in Figure 84. This construction (1-up, l-down in all three directions) is the most nearly perfect of the triaxial weaves, having symmetries in all three in-plane directions. It is perhaps of greater interest as a textile than as a composite reinforcement; emphasis on its development is not proposed or recommended. As textile technology continues to advance, however, to the point that such weaves can be woven with high yarn counts, they may find application in composites in such places as in the vicinity of joints or other points of stress concentration to take best advantage of the gain in ultimate strength recently found for finely woven reinforcements.

In this section a summary is made of unexplored areas which appear to offer promise of performance improvements of various kinds. In some cases weaving capability already exists to produce the weave described, in others extensions to textile technology are required as will be noted. In all cases an assessment of projected potentials is attempted.

BIAXIAL FABRICS

Float Length

The curves of Figure 85 suggest that, for conventional weave constructions as the float length decreases below about 3 yarn diameters (corresponding to 4 harness satins) losses in in-plane reinforcement effectivenesses begin to increase rapidly. The likely cause is the increasing ratio of crimped to straight yarn with diminishing float lengths, possibly exaggerated by the abruptness of the 8 -up/1-down, 6-up/1-down, 4-up/1-down nature of satins. If the weaves were 8 -up/2-down, 6 -up/2-down, etc. the direction reversals would be less abrupt and in-plane yarn effectivenesses can be expected to improve. The magnitude of improvement can be readily explored both analytically, by extending the model of Figures 21 and 22, and experimentally with fabric woven on conventional looms.

Braids

Simple $\pm \phi$ reinforcement configurations have been shown (ref. 22) to provide maximum combinations of in-plane axial - and shear-stiffness/density ratios. Thus either by themselves (probably mostly at values of ϕ not greater than 20° to avoid excessive Poisson effects), or laminated with other configurations, they provide a maximum potential. To provide such configurations in any but small sizes, however, textile technology is deficient. Large braiding machines are not available. In this area machine development (perhaps borrowing from filament winding technology) must come first.

The development of multi-harness machinery to weave triaxial fabrics opens up new possibilities for triaxially woven reinforcements. Hitherto limited to the open Basic Weave and the l-up, l-down BiPlain Weave (Fig. 24), other more desirable configurations now become available. Guidelines for their development are given below.

Volume Fractions

Configurations are needed which provide maximum volume fraction reinforcement. The Substrate 2 -up and l-down Weave (Fig. 24) appears to be a step in that direction compared to the BiPlain. Much depends, however on the final resulting configurations of yarn cross-sections. Extensive photomicrographs, similar to Figure 1 for biaxial fabrics are needed. Longer float lengths than those in the Substrate Weave may be found preferable.

Bumpy Fabrics

Triaxial weaves provide a desirable base for the Bumpy Fabric constructions (Figs. 17 and 18), allowing shear properties to be designed into the woven configuration. Development requires photomicrograph studies to define models for analysis and direct configurations toward maximum volume fractions.

Stitchbase Weaves

The development of Stitchbase Weaves (Fig. 19) to provide thru the thickness holes for sewing plies together can also be used for cases in which substantial thru the thickness reinforcement is required. Both cases present problems: (1) for sewing, the problem is to make the holes small enough; (2) for TTT reinforcenent, the problems are primarily those of insertion. Both problems appear solvable, but (1) may lead to the use of 1 K carbon yarns in the base fabric and (2) may lead to the development of special insertion systems. Further study is needed to evaluate these problems.

The triaxial weave lends itself well to hybridization - carbon fiber in the warps, Kevlar in the fill. Although the evaluations herein showed that in-plane performance of the hybrids is generally less than for all carbon construction, the losses were in many cases minor and possibly more than compensated for by increased toughness. Guidelines here involve: (1) definitization of toughness criteria so that quantitative measures of toughness can be found by test; and (2) tests of representative triaxial hybrids to determine their performance utilizing the criteria developed.

Multilayer Constructions

The Substrate Weave lends itself well to multilayer constructions (Figure 83). Such constructions provide thru the thickness running yearns, and should not be prone to TTT failure. The TTT yarns can just as readily be hybridized, if desired, for further toughness increases. The recent advances in triaxial weaving technology make such weaves accessible.

These multilayer triaxial weaves embody all the desired directional reinforcement characteristics: (1) In plane axial, transverse and shear reinforcement, and (2) thru the thickness reinforcement. These individual properties may be traded off, one against another, but for the same volume fraction total these trade-offs involve no overall loss or gain; the sum total reinforcement remains the same. Lacking is only the flexibility of tapering provided by constructions like the Bumpy fabrics. The guidelines here are that both multi-layer and bumpy should be exploited.

OVERALL CONCLUSIONS AND RECOMMENDATIONS

ANALYSIS METHODOLOGY

Analysis methodology, culminating in the NDPROP Computer code, appears adequate for multi-harness weaves in tension, useful (with arbitrary knockdown factors) for plain weaves in tension and multi-harness weaves in compression, unconservative and to be used with caution for plain weaves in compression. Further research, both analytical and experimental, in this last area is recommended.

POTENTIALS FOR PERFORMANCE

The development of the NDPROP code makes possible an analytical assessment of the difference in potential for performance of woven constructions and unidirectional tape laminates. Results of such an assessment are shown in Figure 85. This upper bound assessment shows less than 48 loss in longitudinal stiffness and ultimate tensile strength for weaves having float lengths corresponding to three or more harnesses. Corresponding first failures (in the vicinity of yarn cross-over) are calculated to occur at stresses 6\%-8\% below those for unidirectional tape lay ups. Thus, inevitably, for in-plane, two-dimensional constructions, such minor losses in performance potentials are to be expected.

Three dimensional reinforcement constructions such as braids like Omniweave, configurations approaching 3-D isotropy, and the like are not competitive in performance with constructions which are primarily $2-D$ planar, with minimal thru the thickness reinforcement. Trade-offs in properties to maximize performance for $3-D$ constructions include the minimization of the thru the thickness elements to the extent possible without encountering thru the thickness weakness problems. Further research, both analytical and experimental is recommended to quantify criteria for the magnitude of thru the thickness reinforcement required.

Innovative approaches to the thru the thickness reinforcement problem, such as the Bumpy Fabric and the Stitchbase Weaves are in early stages of development. Continuing effort to bring them to fruition is recommended. Emphasis should be upon configurations providing angularly oriented in-plane yarns as needed for enhanced shear properties.

REFERENCES

1. Cominsky, A., et al., "Manufacturing Development of DC-10 Advanced Rudder", NASA Contractor Report 159060, May 1981.
2. Ko, F.K., and Pastore, C.M., "Design and Formation of 3-D Fabrics for Advanced Composites" in NASA Conference Publication 2420, 1986.
3. Crawford, James A., Jr., "Recent Developments in Multi-Directional Weaving" in NASA Conference Publication 2420, 1986.
4. Starnes, James H. Jr., Rhodes, Marvin D; and Williams, Jerry G., "The Effect of Impact Damage and Circular Holes on the Compressive Strength of a Graphite/Epoxy Laminate", NASA TM 78796, Oct. 1978.
5. Rhodes, Marvin D., and Williams, Jerry G., "Concepts for Improving The Damage Tolerance of Composite Compression Panels", NASA TM 85748 , Feb. 1984.
6. Dow, N.F., and Rossi, G., et al., "Effect of Fineness of Weave on Crack Initiation and Ultimate Strength of E-Glass/Epoxy Woven Fabric Reinforced Composites in Tension at $\pm 45^{\circ}$ to Warp and Fill", Technical Final Report on Contract NAS1 17934, 1985.
7. Dexter, H. Benson, and Funk, Joan G., "Impact Resistance and Interlaminar Fracture Toughness of Through-the-Thickness Reinforced Graphite/Epoxy", presented at the 27 th Structures, Structural Dynamics, and Materials Conference, May 19-21, 1986.
8. Dow, N.F., "Extension of Triaxial Weaving Technology for Improved Composite Reinforcement". Technical Final Report on Contract NASl17877, 1986.

REFERENCES (Cont'd.)

9. Hashin, Z., "Theory of Fiber Reinforced Materials", NASA CR-1974, 1972.
10. Rosen, B.W., Chatterjee, S.N., and Kibler, J.J., "An Analysis Model for Spatially Oriented Fiber Composites", ASTM STP 617, 1977.
11. Dow, N.F., Derby, E., Ramkumar, R.L., and Rosen, B.W., "Theoretical Evaluation of Advanced Composites for Missile Structural Applications". Final Report on Contract N60921-77-C-0085, 1977.
12. Dow, N.F., Humphreys, E.A., and Rosen, B.W., "Guidelines for Composite Materials Research Related to General Aviation Aircraft". NASA CR 3720, 1983.
13. Dow, N.F., "Directions for 3-D Composite Reinforcement I: Intimations of Isotropy", presented at 21 st Structures, Structural Dynamics and Materials Conference, Seattle, WA, May 12-14, 1980.
14. Stover, E.R., Mark, W.C., Marfowitz, I., and Mueller, W., "Preparation of an Omniweave-Reinforced Carbon-Carbon Cylinder as a Candidate for Evaluation in the Advanced Heat Shield Screening Program". AFML-TR-70-283, 1971.
15. Dow, N.F., Derby, E., Ramkumar, R.L., and Rosen, B.W., "Theoretical Evaluation of Advanced Composites for Missile Structural Applications", MSC Report No. TFR711/1143, 1978.
16. Dow, N.F., and Derby, E., "Survey of Metal Matrix Technology for Fabrication of Bridging Structures" Technical Final Report on Contract DAAG46-79-C-0067, 1980.
17. Ishikawa, Takashi, "Anti-Symmetric Elastic Properties of Composite Plates of Stain Weave Cloth," Fibre Science \& Technology, 15, p. 127, 1981.
18. Ishikawa, Takashi and Chou Tsu-Wei, "Elastic Behavior of Woven Hybrid Composites," Journal of Composite Materials, 16, p. 2, 1982.
19. Walrath, David E., and Adams, Donald F., "Iosipescu Shear Properties of Graphite/epoxy Composite Laminates", NASA CR-176316, June 1985.
20. "Standard Tests for Toughened Composites", NASA Reference Publication 1092, 1983.
21. Williams, Jerry G., O'Brien, Kevin T., and Chapman III, A.J., "Comparison of Toughened Composite Laminates Using NASA Standard Damage Tolerance Tests", ACEE Composite Structures Technology Conference Proceedings, NASA CP 2321, 1984.
22. Dow, N.F., and Ramnath, V., "Evaluation and Criteria for 3-D Composites, in NASA Conference Publication 2420, 1985.
Table 1. Predicted Elastic Properties for Selected T300/Epoxy

	$\begin{aligned} & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{+}{7} \\ & \hdashline \end{aligned}$	$\begin{aligned} & 9 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { V } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & \underset{0}{n} \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & +1 \\ & \dot{1} \\ & 0 \end{aligned}$
$\begin{aligned} & \infty \\ & \substack{\infty \\ \infty \\ \hline} \end{aligned}$	$\begin{aligned} & \vec{\sigma} \\ & \dot{0} \\ & \vec{r} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & 7 \\ & 7 \\ & 0 \\ & 0 \end{aligned}$
$$	$$	$\begin{aligned} & \text { N } \\ & \infty \\ & -1 \end{aligned}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { N } \\ & \underset{\sim}{1} \\ & 0 \end{aligned}$
$\begin{aligned} & \sigma \\ & \stackrel{\pi}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & - \\ & \infty \\ & - \\ & -1 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{0} \\ & \dot{0} \end{aligned}$
$\begin{aligned} & \underset{\sim}{H} \\ & \underset{\sim}{\pi} \\ & \underset{\sim}{-1} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -\infty \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & N \\ & \because \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 10 \\ & 7 \\ & 0 \\ & \hline 0 \end{aligned}$
$\begin{aligned} & \lambda \\ & \underset{1}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} -1 \\ \sum_{n}^{\infty} \\ N \end{gathered}$	\sum_{0}^{∞}		a_{x}^{x}	$\begin{aligned} & \lambda_{2}^{N} \\ & \lambda_{X}^{N} \end{aligned}$

Table 2. Predicted Elastic Properties for Selected TBOO/Epoxy

Biaxial Woven Fabrics, $v_{f}=0.6$

	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \sim \end{aligned}$	$\begin{aligned} & \sigma \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & m \\ & \dot{\infty} \\ & \stackrel{0}{m} \end{aligned}$	$\begin{gathered} \sim \\ \sim \\ \sim \\ \sim \end{gathered}$	$\begin{aligned} & 0 \\ & - \\ & - \end{aligned}$
$\begin{aligned} & \mathbb{C N} \\ & \substack{\text { N }} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { or } \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{m}} \\ & \dot{r} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \mathrm{O} \end{aligned}$
$\begin{aligned} & \text { 告 } \\ & \end{aligned}$		$\begin{gathered} c \\ 0 \\ 0 \\ -1 \end{gathered}$	$\begin{aligned} & \text { or } \\ & \text { or } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{+} \\ & \dot{H} \end{aligned}$	$\begin{aligned} & 0 \\ & -i \\ & -1 \end{aligned}$
$\stackrel{\square}{i}$	$\begin{aligned} & r \\ & C \\ & 0 \\ & 0 \\ & r \end{aligned}$	$\begin{gathered} 0 \\ \dot{0} \\ 0 \\ -1 \end{gathered}$	$\begin{aligned} & \text { O } \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & n \\ & \dot{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & n \\ & \dot{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \sim \\ & -7 \\ & \sim \end{aligned}$
$\begin{aligned} & \pi \\ & -\underset{\sim}{\pi} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & C \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \dot{\sim} \\ \mathrm{O} \\ \sim \end{gathered}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{-1}{\sim} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \sigma \\ & \stackrel{0}{\square} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{gathered} \sim \\ \sim \\ \sim \end{gathered}$
	$\begin{aligned} & -1 \\ & 0 \\ & \underline{n} \end{aligned}$	$\begin{aligned} & \text { r } \\ & n \\ & n \end{aligned}$				-
$\begin{aligned} & \lambda \\ & \dot{H} \\ & 0 \\ & 0 \\ & \alpha_{1} \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & {\underset{\theta}{x}}^{x} \\ & {\underset{E}{x}}_{x}^{x} \end{aligned}$	$\begin{aligned} & {\underset{u}{0}}_{x}^{x} \\ & D_{e} x \end{aligned}$		$\begin{gathered} \underset{n}{n} \\ \stackrel{n}{n} \\ 0_{0} \\ 0_{0} \end{gathered}$	$\begin{gathered} \stackrel{r}{u} \\ \underset{x}{x} \\ =i_{n} \\ n_{n} \end{gathered}$	$\begin{aligned} & 3 \times N \\ & n_{n}^{N} \\ & \tilde{n}_{n}^{2} \end{aligned}$

Table 4. Predicted Strengths for Selected TSOO/Epoxy

Geometrical Parameters Used for Property Calculations
of Biaxial Woven Fabrics

$\xrightarrow{\substack{1 / 2 \\ \infty \\ \infty}}$	0 0 0 0	O.	$\stackrel{\infty}{\sim}$.00175	$$		$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$
$\stackrel{n}{5}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\bigcirc}{+}$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \stackrel{n}{1} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & 0 \\ & 8 \\ & 0 \end{aligned}$
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\text { O}}{\substack{\text { O} \\ \text { - }}}$	$\stackrel{\sim}{\sim}$		$\begin{aligned} & \hat{0} \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \text { n} \\ & 0 \\ & \stackrel{0}{6} \end{aligned}$	$\begin{array}{ll} N & 0 \\ N & 0 \\ 0 & 1 \\ 0 & \pi \\ 0 & 3 \end{array}$
$\begin{aligned} & \underset{\sim}{\pi} \\ & \underset{\sim}{7} \end{aligned}$	10 0	-	0 \sim - -1	$\begin{aligned} & \text { n} \\ & \stackrel{0}{8} \\ & 0 \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{\underset{\sim}{\underset{N}{*}}} .}$	0 0 0 ∞ ∞	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
				$\begin{aligned} & N_{H} \\ & \cdot H \\ & i^{4} \end{aligned}$	$>^{\frac{0}{4}}$	$>^{4}$	$\begin{aligned} & N_{H} \\ & \underset{\sim}{4} \\ & \dot{4} \end{aligned}$

Property	Plain ($\mathrm{v}_{\mathrm{f}}=.667$)		Oxford ($\left.\mathrm{v}_{\mathrm{f}}=.620\right)$		$5 \mathrm{HS}\left(\mathrm{v}_{\mathrm{f}}=.640\right)$		$8 \mathrm{HS}\left(\mathrm{v}_{\mathrm{f}}=.640\right)$	
	Calc.	Meas.	Calc.	Meas.	Calc.	Meas.	Calc.	Meas .
$\mathrm{E}_{\mathrm{x}^{\prime}}^{+(1)} \mathrm{Ms} \mathrm{i}$	11.62	9.13	10.69	9.63	11.56	10.05	11.61	10.59
$\mathrm{E}_{\mathrm{x}} \mathrm{S}^{(2)} \mathrm{Msi}$	11.62	9.14	10.69	8.26	11.56	8.88	11.61	9.15
$\mathrm{E}_{\mathrm{Y}}^{+}$, Msi	11.62	8.83	10.77	9.68	11.56	10.09	11.61	10.35
$\mathrm{E}^{-}{ }^{-} \mathrm{Msi}$	11.62	8.59	10.77	8.44	11.56	8.80	11.61	8.94
$\mathrm{G}_{\mathrm{Xy}}{ }^{\prime} \mathrm{Msi}$	1.17	-	10.99	-	10.89	0.810	0.90	0.811
$\nu_{x y}^{+}$	0.061	0.113	0.062	0.057	0.051	0.056	0.052	0.054
ν_{XY}^{-}	0.061	0.084	0.062	0.063	0.051	0.056	0.052	0.056

[^0]| Property | Plain ($\mathrm{v}_{\mathrm{f}}=.667$) | | Oxford ($\left.v_{f}=.620\right)$ | | $5 \mathrm{HS}\left(\mathrm{v}_{\mathrm{f}}=.640\right)$ | | $8 \mathrm{HS}\left(\mathrm{V}_{\mathrm{f}}=.640\right)$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Calc. | Meas. | Calc. | Meas. | Calc. | Meas . | Calc. | Meas. |
| $\boldsymbol{o}_{\boldsymbol{x}}{ }^{+(1)} \mathrm{ksi}$ | 68.1 ${ }^{(1) / 111.8}$ | 79.8 | $75.3{ }^{(1)} / 102.5$ | 90.5 | $73.9{ }^{(1)} / 110.7$ | 105.7 | $74.0^{(1)} / 110.7$ | 121.3 |
| $\sigma_{x}^{-2} \mathrm{ksi}$ | 114.1 | 57.9 | 105.0 | 73.3 | 113.3 | 100.7 | 113.6 | 118.6 |
| $o_{Y}^{+}, k s i$ | 68.1 ${ }^{(1)} / 111.8$ | 68.4 | $70.5^{(1)} / 103.6$ | 96.3 | $73.9^{(1)} / 110.7$ | 109.2 | $74.0^{(1)} / 110.7$ | 115.8 |
| $o_{Y^{\prime}}^{-} \operatorname{ksi}$ | 114.1 | 53.2 | 105.7 | 101.6 | 113.3 | 109.8 | 113.6 | 112.8 |
| ${ }^{\boldsymbol{r}}{ }^{\text {KY }}$, $\mathbf{k s i}$ | 15.1 | - | 16.1 | - | 13.3 | 16.0 | 13.5 | 16.1 |

[^1]$$
x y-i n-p l a n e ~ s h e a r
$$
$y z, z x$ - transverse shear
Table 9. Geometrical Parameters Used for Property Calculations

$\overrightarrow{3}$ \vdots B \vdots \vdots	15 0 0 0	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{0}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & n \\ & \infty \\ & \dot{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{H} \\ & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	15	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { O} \\ & \text { O } \\ & \hline \end{aligned}$
8 m 0 0 0 0 0 0	$\begin{aligned} & \text { N } \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \\ & 7 \end{aligned}$	$\stackrel{\square}{5}$	$$	\cdots	$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{1} \\ & 6 \\ & \hline \end{aligned}$	0 0 0 0 0 0 0
xə7ашелед алеөм	uṭ 'sseuxวṭu7 KTd	$>^{4}$	$\begin{aligned} & \text { H } \\ & \text { Hi } \end{aligned}$		$b^{\frac{0}{4}}$	$i_{3}^{(2)}$	

Table 10. Comparison of Calculated Versus Measured Triaxiai Woven Fabric Properties and Strengths

Property	T300/934 ($\mathrm{v}_{\mathrm{f}}=.45$)		Kev/934 $\left.\mathrm{VF}_{\mathrm{f}}=.39\right)$	
	Calc.	Meas.	Calc.	Meas.
$\mathrm{E}_{\mathrm{x}}^{+(1)}, \mathrm{Msi}$	5.64	4.60	2.63	1.81
$\mathrm{E}_{\mathrm{X}}^{-(2)}$, Msi	5.64	4.56	2.63	2.01
$\nu_{y^{\prime}}^{+}$Msi	5.64	5.05	-	-
$\mathrm{E}_{\mathrm{Y}}{ }^{-}$, Msi	5.64	5.13	-	-
$\nu_{x y}^{+}$	0.284	0.234	0.293	0.256
ν_{xy}^{-}	0.284	0.232	0.293	0.305
v_{Yx}^{+}	0.284	0.250	-	-
${ }^{2} \mathrm{yx}$	0.284	0.268	-	-
${ }^{\sigma}{ }_{\mathrm{x}}{ }^{+}, \mathrm{ksi}$	42.1/69.8	36.8	32.8	24.1
${ }^{\prime \prime}{ }_{\mathrm{x}}^{-}$. ksi	68.3	42.7	14.1	18.5
${ }_{\sigma_{\mathrm{y}}}^{-}, \mathrm{ksi}$	$33.0 / 49.8$	41.5	-	-
${ }^{\sigma}{ }_{\mathrm{Y}}{ }^{-}$, ksi	55.5	49.6	-	-

(1) + indicates tension
(2) - indicates compression
Table 11. Comparison of Fabric Versus Tape Compression after Impact Test Data, T300/Epoxy

Property	Oxford Weave	5HS Weave	8HS Weave	Tape Laminate
v_{f}	.633	.669	.656	-
Failure Stress $\sigma_{\mathrm{x}}{ }^{\circ} \mathrm{ksi}$	25.75	26.78	26.40	21.00
Failure Strain, $\varepsilon_{x^{\prime}}^{c} \%$.4196	.4152	.4010	.2887
Modulus $\varepsilon_{x^{\prime}}^{c}$ Msi	6.44	6.79	6.88	7.37

[^2]Table 12. Comparison of Fabric Versus Tape Data for NASA

Property	Oxford Weave	5 HS Weave	8HS Weave	Tape Laminate
Double Cantilever Beam $G_{I C}, l b . / i n .{ }^{1}$	2.23	1.85	2.25	0.44^{3},
Open Hole Tension Failure Stress, ksi ${ }^{1}$ Failure Strain, $\%^{1}$ Failure Stress, ksi ${ }^{2}$ Failure Strain, * ${ }^{2}$	$\begin{aligned} & 46.3 \\ & .4683 \\ & 38.5 \\ & .5560 \end{aligned}$	$\begin{aligned} & 50.2 \\ & .4820 \\ & 41.2 \\ & .5780 \end{aligned}$	$\begin{aligned} & 50.0 \\ & .4613 \\ & 41.8 \\ & .5600 \end{aligned}$	$44 \cdot 5^{-}$
Open Hole Compression Failure Stress, ksi ${ }^{1}$ Failure Strain, $\boldsymbol{*}^{1}$ Failure Stress, ksi^{2} Failure Strain, * ${ }^{2}$	$\begin{aligned} & 25.8 \\ & .3180 \\ & 30.0 \\ & .4903 \end{aligned}$	$\begin{aligned} & 30.2 \\ & .3628 \\ & 35.9 \\ & .5573 \end{aligned}$	$\begin{gathered} 30.9 \\ .3633 \\ 38.2 \\ .5770 \end{gathered}$	$\begin{aligned} & 36.5^{3} \\ & .5600^{3} \end{aligned}$

Table 13. Calculation of Elastic Properties and Strengths of Original "Building-Block" Auxiliary Warp Configuration

Property	Face-Ply	Internal-Ply	4-Ply	$12-\mathrm{Ply}$
$\mathrm{E}_{\mathrm{x}}{ }^{\prime} \mathrm{Msi}$	11.72	12.80	12.48	12.70
E_{Y}, Msi	7.06	4.66	5.56	4.93
$\mathrm{E}_{\text {z }}$, Msi	1.76	1.87	1.82	1.86
G_{xy}, Msi	0.69	0.64	0.66	0.65
$\mathrm{G}_{\mathrm{Y} z^{\prime}}$ Msi	0.89	0.81	0.79	0.80
$\mathrm{G}_{\mathbf{z x}}$, Msi	0.76	0.64	0.74	0.67
${ }^{\nu} \mathrm{XY}$	0.032	0.069	0.050	0.063
${ }^{\nu} \mathrm{yz}$	0.499	0.431	0.432	0.431
${ }^{2} \mathbf{z x}$	0.057	0.041	0.051	0.044
$\sigma_{\mathrm{x}}+\mathrm{ksi}$	78.4/123.9	80.8/137.6	80.9/133.2	$80.8 / 136.3$
$\sigma_{\mathrm{Y}^{\prime}}^{+} \mathrm{ksi}$	51.4/67.6	29.1/40.3	$34.6 / 50.6$	30.7/43.4
$\sigma_{\mathrm{x}}{ }^{-} \mathrm{ksi}$	122.3	133.3	130.1	132.4
$\sigma_{Y^{-}}^{-}$ksi	73.8	48.7	58.0	51.5

+ indicates tension
- indicates compression

Table 14. Comparison of Predicted and Measured Properties and of Original "Building-Block" Auxiliary Warp Configuration

Property	Face-Ply		4-PIY		12-P1Y	
	Predicted	Measured	Predicted	Measured	Predicted	Measured
E_{x}^{+}, Msi	11.72	8.60	12.48	9.11	12.70	9.66
$\mathrm{E}_{\mathrm{y}}^{+}$, Msi	7.06	5.92	5.56	5.19	4.93	4.48
$\mathrm{E}_{\mathrm{x}}^{-}$, Msi	11.72	--	12.48	--	12.70	8.81
$\mathrm{E}_{\mathrm{Y}}^{-}{ }^{-} \mathrm{Msi}$	7.06	--	5.56	--	4.93	4.67
$\psi_{x y}^{+}$	0.032	0.148	0.050	0.150	0.063	0.134
ν_{yx}^{+}	0.019	0.098	0.022	0.083	0.024	0.080
$\nu_{x y}^{-}$	0.032	--	0.050	--	0.063	0.136
ν_{yx}^{-}	0.019	--	0.022	--	0.024	0.031
$\sigma_{\mathrm{x}}^{+}, \mathrm{ksi}$	78.4/123.9	71.0	80.9/133.2	77.35	80.8/136.3	82.5
$\sigma_{\mathrm{y}}^{+}{ }^{\text {, } \mathrm{ksi}}$	51.4/67.6	45.2	34.6/50.6	37.86	30.7/43.4	34.9
$\sigma_{\mathrm{x}^{-}}, \mathrm{ksi}$	122.3	--	130.1	--	32.4	45.6
${ }^{-} \mathrm{y}^{-} \mathrm{ksi}$	73.8	--	58.0	--	51.5	34.9

[^3]Table 15. Results of Elastic Property Calculations on Revised Design Auxililary Warp Reinforcement Weaves

Property	Nested Face-Ply	Nested Internal-Ply	Nested Face \& Internal Files
E_{x}, Msi	11.93	13.03	12.56
E_{y}, Msi	6.67	5.30	5.89
E_{z}, Msi	1.71	1.73	1.72
$\mathrm{G}_{\mathrm{xy}}, \mathrm{Msi}$	0.66	0.65	0.66
G_{Yz}, Msi	0.62	0.59	0.60
$G_{z x}, \mathrm{Msi}$	0.69	0.70	0.70
${ }^{\prime} \mathrm{YX}$	0.050	0.064	0.057
${ }^{\nu} \mathrm{Yz}$	0.374	0.364	0.368
$\nu_{\text {zx }}$	0.052	0.047	0.049
t, in	0.035	0.047	0.082
${ }^{\mathrm{v}} \mathrm{f}$	0.55	0.54	0.54

5 Harness Satin Weave - 8 plies

$\frac{\text { Mid- }}{\text { plane }}$

8 Harness Satin Weave - 8 plies

Oxford Weave - 8 plies

$\frac{\text { Mid- }}{\text { bane }}$

Figure 2. Tensile Performance Evalvetions, -Various Materiels and Configurations.
olotted is tensile strength/gensity ratio " x to meet stiffness requirey ratio

 however, the extensional stiffness may become critical.
T300/5208

Tensile Performance Evaluations, - Comparison of $0^{\circ} / \pm \phi^{\circ}$ and $\pm \phi^{\circ} / 90^{\circ}$ configurations. The $\phi^{\circ} / 90^{\circ}$ configuration has higher strength/density values than the $0^{\circ} /: \varphi^{\circ}$ configuration up to the maximum shear stiffness ($\varphi=45^{\circ}$)

Envelopes
 Tensile Performance Evaluations, - Comparisons of Envelope Curves for Various Proportions of $-0^{\circ} / 90^{\circ} \mathrm{T}-300$, Kevlar, and Hybrids of $T-300$ and Kevlar. Except For the region of tensile stiffness requirements
$5 \times 10^{8}{ }^{E}{ }^{*}<15 \times 10^{8}$ the hybrid properties all fall between those for $T-300$ and Fevlar. Fevlar can rot compere with $T-300$ for any shear stiffness requirement.
Figure 5.

T-300/5208

Figure 7. Tensile Performance Evalations, Effects of Adding Through-the-Thickness Reinforcements to to $90^{\circ} 2-D$ Reinforcement Configurations Having Equal Volume Eraction Reinforcements in the Three Planar Directions. Performance losses can be substantial for high shear stiffness requirements.

Kev Hy $\left(V_{f} T-300\right)$
 Thin Volume Fraction Reinforcements in the Three Planar Directions. Equal volume losses; are enormous for all shear stiffness requirements.

Figure $i 0$.

ORIGNAL PAGE IS C. POOR QUALITY

 for Compressive Loadings. Curve is typicai, though specificaiiy accurate as drawn for $\pm 30^{\circ} / 90^{\circ} / 90^{\circ}$ quasi-isotrodic in-piane reinforcenen: contiguzations. See aiso tigure i2.

Figure 12. Detajled Representation of Penalties for Thru the Thickness
Reinforcement for Compressive Loading of $2 \dot{\omega}^{\circ} / 90^{\circ} 2-\mathrm{D}$ Reinforcement Contigurations.
 Pian Views from Above First Face-Ply-for-Nesting construcing to approach a circular cross base weave are tw
section as shown.
Figure 13.

Cell Volume $=4 \mathrm{~L} \times 7 \mathrm{~L} \times .038^{\prime \prime}$
$\mathrm{L}=1 / 18^{\prime \prime}$

$$
\begin{aligned}
& \begin{array}{l}
\text { dediuerately spaced to } \\
\text { As it turned out too much }
\end{array} \\
& \text { space was allowed and resin porkets remijteci. }
\end{aligned}
$$

- tr axngra
$\stackrel{\infty}{0} \rightarrow 1$
$\longmapsto \quad \begin{gathered}0 \\ 0 \\ 0\end{gathered} \longrightarrow$

ORIGINAL PAGE IS
OF POOR QUALITY

Bottom View

Figure 15. Revised (Mark II) Bumpy Fabric Stacked the Aluxiliary Warps Two High, as Shown Here. Whether this is adequate to provide appreciable thru the thickness reinforcement is yet to be determined.

ORIGNAL PAGE IS OF POOR QUALITY

Figure
Bulbous Blade Bumpy Construction Woven with Auxiliary Warps Flat (Untwisted) and Oriented Vertically as Shown. Nesting provides snug

ORIGINAL PAGE IS OF POOR QUALITY

Sunstrate Triaxial weave with Auxiliary Warps. The Substrate shown is joosely woven to a density equivalent to that of a tighty woven biaxtal piain weave to iliustrate the construction. Normaily the substrate would be snugiy packed together so that the -30° warps would not be visibie. (See aiso

$\begin{aligned} & \text { Ėgure ; B. Suijous Biade Auxijiary Warys in a Triaxiai Substrate weave Sase. The } \\ & \text { Suostrate Weave is shown loosely woven to permit the }-30^{\circ} \text { yarns to } \\ & \text { apoear. }\end{aligned}$

[^4]5 Harness Satin Weave - 8 plies
 Went
Oxford Weave - 8 plies

Figure 21. Representative Cross sectional Area Elements of Woven Fabric of Various Float lengths (i.e. Various Herness Numbers) as Used in NDPRDP Analysis.
three harness weave

Figure 2?. Representation of the Variation of Yarn Bundle Cross Sections at Yarn Cross-over Points and Along Straight Floats as Modeled for NDPROP Analysis.
PLAIN WEAVE

Definition of Symbols not defined in figure:

$V_{f b}$: volume fraction of fibers in yarn
${ }_{f}$:overall fiber volume fraction
e : eccentricity of ellipse $=b / a$
$v_{f p}$:volume fraction of yarns within repeating element

Procedure: Given L, T and A_{f}

1. Calculate $\mathrm{b}=0.25 \mathrm{~T}$
2. Assume $V_{f b}$
3. Calculate $e=\pi b^{2} v_{f b} / A_{f}$

-

Figure 23 . Cross Sectional View of Elliptical-Section Yarns for Triaxial Weaves and Procedures to Define Yarn Geometry.
4. Solve for r, where $b<r<b / e$:

$$
\tan ^{-1} \frac{2 b}{L}+\tan ^{-1} \sqrt{\frac{L^{2}-4 r^{2}-2 T r}{2 r+2 b}}+\tan ^{-1} \sqrt{\frac{r^{2}-b^{2}}{b^{2}-e^{2} r^{2}}}=90^{\circ}
$$

5. Determine fabric geometrical parameters:

$$
\begin{aligned}
& \alpha=\tan ^{-1} \frac{2 b}{L} \\
& \beta=\tan ^{-1} \sqrt{\frac{L^{2}-4 r^{2}-2 T r}{2 r+2 b}} \\
& \gamma=\tan ^{-1} \sqrt{\frac{r^{2}-b^{2}}{b^{2}-e^{2} r^{2}}} \\
& \ell=\sqrt{L^{2}-2 T r-4 r^{2}}
\end{aligned}
$$

6. Compute $\left.v_{f}=\frac{3 A_{f}}{L^{2} T}\left[\ell+2 a_{o} \int_{0}^{\sin ^{-1}\left(\frac{r_{o}}{a_{o}} \sin \gamma\right.}\right) \quad \sqrt{1-\sin ^{2} \theta \sin ^{2} \phi} d_{\phi}\right]$
where $\quad r_{0}=r+b$;
$b_{0}=2 b ;$
$a_{o}=\frac{r_{o} b_{o} \sin \gamma}{\sqrt{b_{o}^{2}-r_{o}^{2} \cos ^{2} \gamma}} ;$
and $\quad \theta=\sin ^{-1} \sqrt{1-\frac{b_{0}^{2}}{a_{0}^{2}}}$
7. Calculate $\bar{v}_{f \mathrm{~F}}=\mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{fb}}$

Figure 23. Cross Sectional View of Elliptical-Section Yarns for Triaxial Weaves, and (cont'd) Procedures to Define Yarn Geametry.

ORIGINAL PAGE IS OF POOR QUALITY
Figure 24. BiPlain anc Substrate Triaxial weaves. In the Biplain the weave is one up and one down for the fill with each of the warps. In the Substrate The warps are not interwoven.

Cell Volume $=4 \mathrm{~L} \times 7 \mathrm{~L} \times .038^{\prime \prime}$
$\mathrm{L}=1 / 18^{\circ}$
 oanciating zroperties of First Nesten Contigurations.

ORIGNAL PAGE IS
 C) POOR QUALITY

Figure 25. Revisea Design Auyiliawy warp Construction. Fevisions from finst design include stacking of the auxiliary warps to make the fabric more bumpy and increasing float lengths to improve compressive propertins.

Ficure 27. Cross Sections of Revised Face Ply Reinforcement Showing Auxiliary wny Tie-Down Every Fifth Pick, Alternating over-and-ander the indivinaj Yarn Pairs of the Auxiliaries.

ORIGINAL PAGE IS
 OF POOR QUALITY

Figure 23. Cross Sections of Revised Internal Ply Reinforcement with Similar EieJowns for the Auxiliaries to Those in the Face plies. From this Eigure the construction appears much more oumpy than the original auxiliary warp construction (fig. i4). As woven, however, the ditference did no: appear neariy as great.

ORIGINAL PAGE IS OF POOR QUALITY

Nested Face and Internal Plies

$$
\begin{aligned}
\text { Cell volume } & =4 L^{\circ} \times 10 L \times .082^{\prime \prime} \\
L & =1 / 18^{\prime \prime}
\end{aligned}
$$

Figure 29. Nominal Nesting of Multi-Ply Revised Auxiliary Warp Constructions Indicating Magnitude of Through-the-Thickness Running and Overlapping Fill Yarns.

IV. Kevlar $\pm \phi^{\circ} / 90^{\circ}$ configurations. Addition of 90° reinforcement to the $\pm \phi^{\circ}$ configuration is not as saluorious as for $T-300$ (fig. 32). A compressive failure mode in the 90° filaments due to Poisson contraction is encountered in the low volume fraction 90° range found attractive in $T-300$. Keviar reinforcements in any combination of proportions of the $t \phi^{\circ} / 90^{\circ}$ configuration do not surpass the aluminum alloy properties for combined tension and shear stit: ness.
ORIGINAL PAGE IS OF POOR QUALITY

Kev-49/5208

Figure 35. Evaluations of Intrinsic In-Plane Properties of Multi-Directional
Kevlar $0^{\circ} / \psi^{\circ}$ configurations are not susceptible to the compressive failures of the $\phi^{\circ} / 90^{\circ}$ reinforcements but even so are not competitive in performance with $T-300$ (c.f.Fig.32).
T-300/5208
 Figure 36. Overall Comparisons of $=0^{\circ} / 90^{\circ}$ and $0^{\circ} / 0^{\circ}$ Configurations in Tension. 0 (in congurat tension hear stiffness characteristics for any proportions. combined tension-shear stifiess haracteristiffer any prosent pronorThe coincinence of th tions apporaching 0 predominate. It is in the intermediate, mixed region that the ris' 90° configurathm shoms alight super injity.

ORIGINAL PAGE IS OF POOR QUALITY

T-300/5208

Figure 37 . If Keinforcement configurations and Properties Are Such that Premature irst Eailures Are Not Encountered, the Difference Between a First
 Characteristics: as Illustrated Here for the well proportioned $T-300$

ORIGINAL PAGE IS ORIGINAL PAGE IS OF POOR QUALITY

Figure 3a. Evaiuations of Effects of Thru the Thickness Reinforcement.Tension on a $T-300 / 5200^{\circ} / 40^{\circ}$ contionation fiaving Equal In-Plane Reinforcements in Aii Three Directions, with Various Amounts of it Reinforcenent. Fallum anoes are rot affecter of the adailion o

Figure 39. Evaiuations of Etfects of Tinvine tnickness Reinforcemert. Pdane Reinforcements in Ail Three Dimectons with Various Amount
 tion of the rit ixiaments; effects on strevgrins are oraeriv and nercentagewise $\dot{\text { ness tnan tre percent pro reinforcement. }}$

ORIGINAL PAGE IS OF POOR QUALITY

Figure 40 . Evaiuation of Effects of Thru the Tajckness Reinforcement. Tension on a $\bar{i}-300^{\circ} /$, 0° configuration having equai reinforce-
tre uof re:quedsan

Figure 4 i. Evaiuation of Eftects of Thru the Tnickness Reinforcement. Tension on a Keviar/5208 $0^{\circ} / \pm \psi^{\circ}$ configuration naving equai reinforcements in ail tnree directions, with various amounts of ITT
 strengtn base configurations at nagn tTT reintorcements.
ORIGINAL PAGE IS
OF POOR QUALITY

Figure 42. Summary of Effect of Thru the Thickness Reinforcement on Tensije

[^5]
ORIGINAL PAGE IS OF POOR QUALITY

Figure 44. Evaiuation of intrinsic in-piane Properties of Muiti-Difectional

SI.

[^6]

Figure 47. Evaluation of Intrinsic In-Plane Properties of Multi-Directional
T-300 $0^{\circ} / 1 巾^{\circ}$ configurations are relatively insensitive to changes in proportions of filaments in the various directions. Optimal proportions provide slightly lower combined tension-shear Figure 47. Evaluation of Intrinsic In-Plane Properties of Multi-Directional
Reintorcements in Compression.stiffness/density ratios than $\pm \phi^{\circ} / 90^{\circ}$ configurations but still yield values of $\frac{x}{\rho}$ four times that of the aluminum aijoy at the same snear stiffeess/density ratio.

ORIGINAL PAGE IS
Of POOR QUALITY

Figure 50. Evaluations of Hybrids. -
\[

$$
\begin{aligned}
& \text { Triaxial Weave }+\phi^{\circ} / 90^{\circ} \text {, Kevlar in the } 90^{\circ} \text { direction, in tension. } \\
& \text { As in the all Kevlar } 4 \phi^{\circ} / 90^{\circ} \text { configurations (fig. 33) premature } \\
& \text { compressive failures are encountered in the } 90^{\circ} \text { filaments with } \\
& \text { resulting poor values of } \frac{x}{\rho}
\end{aligned}
$$
\]

II.
II. Triaxial Weave $+\phi^{\circ} / 90^{\circ}$, Kevlar in the 90° direction, in tension.
As in the all Kevlar $5 \phi^{\circ} / 90^{\circ}$ configurations (fig. 33) premature
compressive failures are encountered in the 90° filaments with
resulting poor values of $\frac{\sigma^{\circ}}{\rho}$
Kev Hy, 90° T-300

Figure 51. Evaluations of Hybrids.-

[^7]

Figure 55. Evaluations of Hybrids. -

Figure 50. Evaiuations of Kyorios. -

$0^{\circ} \mathrm{T}-300$

XiI. $0^{\circ} / 90^{\circ}$ weave, $\overline{\text { a }} 300$ in the wary 0°, direction, Keviar in the
Figure 60. Evainatiors of ziroricis. -

Fagure 6i. Evaiuations of Eivorias. -

Eigure 63. Evaluations of Hybrids. -
Triaxial weaves $\pm \phi^{\circ} / 90^{\circ}$, Kevlar in the 90° direction, in
compression. Premature failure modes are not encountered and
performance is excellent and similar to the related all T-300
configuration (Fig. 32.). The hybrid is slightly superior at
higher values of $\frac{\mathrm{Gy}}{\rho}$. XV.

original page is OF POOR QUALITY

Figure 64. Evaluations of Hybrids.-

Figure 65. Evaluations of Hybrids. -

Overall evaluations of $-\dot{\phi} / 90$ triaxial weaves in compression. Envelope curves drawn to the individual curves of Figures 46 and 65 and calculated for all Feviar show that the hybrids are somewhat below the all T-soo rejnforcements. The all kevlar is inappropriate for compressive loadings.

Figure 69. Evaluations of Hybrids. -

T-300 $\mathrm{Hy}, 90^{\circ} \mathrm{Kev}$

Figure 70. Evaluations of Hybrids.
FitI. Use ot indiciator nombers to assess potentials for performance ju compression.
(b) Triexial i $/ 90$ weaves, kevlar in the go" direction. welghl siciviugs of over fow.

[^8]
Figure 22. Evaluations of Hybrids.-

AxIV. Use of indicator numbers to assess potentials for performance in compression.
(d) Triaxial $\quad \dot{m}^{\circ} / 0^{\circ}$ weaves, $T-300$ in the 90° direction. As is to be experter becanse of the low oompressive streingth of
fevlar, thest hyorids are inot competitive with the corresponding $0^{\circ}: 90^{\circ}$ kevlar in the 90° direction hyorids. Even so they bave the potential to outwerform the aluninum alloy.

Figure 7it Evaluations of Hybrids. -

ORIGINAL PAGE IS
OF POOR QUALITY

3 plies

\therefore Gize 75. Gumpy Eaminate Cross-Sectionaj Concept for Thru the Tinckness Stzengtin.

ORIGINAL PAGE IS OF POOR QUALITY

(a)
(4 . The
Figure 77. The Voids Evidenced Here in the Nominally Nested Configurations of the
First Bumpy Construction May Have Contributed to the Lack of Substantial
Thoughothe-Thiohness Reinforcement of This Injtial Eumpy-Fabrio
Construction.

Figure 78. Revised (Mark II) Bumpy Fabric Stacked the Auxiliary Warps Two High, as Shown Here. Whether this is adequate to provide appreciable thru the thickness reinforcement is yet to be determined.

Figure 81. As Shown Here the Auxiliary Warps Have Relatively Long Floats. Alternatively, they could be woven to be tied in every second, fourth or other multiples of two fill yarns.

ORIGINAL PAGE IS OF POOR QUALTHY

Figure 82. Nesting of Bulbous Blade Auxiliary Warps Atop Substrate Weave Fabric Constructions Is Different from that of Auxiliaries on Plain Weave Fabrics. The high Poisson's ratio of the Substrate Weave will permit some control of the width dimension by tensioning the fabrics. Truly compact nested configurations should be achievable.

Figure 83. The Cross Section at the Bottom of the Figure Shows a Two Layer Construction. Up to four layers should be possible without difficulty.

ORIGNAL PAGE IS of POOR QUALITY

Figure 84. The Perfect Weave with Three-Way Symmetry, of Minor Interest for Composite Reinforcement Because of Short Float Lengths (1-up, 1-down in all three directions). Finely woven, however, it may have application in areas of stress concentration.

Figure 85. Losses in Properties in Tension Calculated by NDPROP for Biaxial Weaves Compared to $0^{\circ} / 90^{\circ}$ Unidirectional Tape Laminates. Losses in E_{x} are in part compensated by increases in other elastic properties such as E_{z} and ${ }^{G}{ }_{x z}$.

APPENDIX A

ANALYTICAL MODELS FOR THE CALCULATION OF WOVEN FABRIC PROPERTIES

```
    LIST OF SYMBOLS
As used in Appendix A
```

A	area
$A_{i j}$	matrix relating in-plane stresses to strains
$B_{i j}$	matrix relating in-plane stresses to curvatures
$C_{i j}$	stiffness matrix
D_{ij}	matrix relating moments to curvatures
E	Young's modulus
G	shear modulus
h	thickness
L	thread count
$S_{i j}$	compliance matrix
$\Delta \mathrm{T}$	temperature difference from stress free temperature
U	strain energy
U_{c}	complementary energy
v_{f}	fiber volume fraction
α_{i}	thermal expansion coefficient vector
β_{i}	thermal curvature coefficient vector
Γ_{i}	vector relating strains due to applied temperature gradients to stresses
Δ_{i}	vector relating curvatures due to applied temperature gradients to stresses
${ }^{\boldsymbol{i}}$	strain vector
κ	curvature vector
σ_{i}	stress vectar
ν	Poisson's ratio
	SUBSCRIPTS
L	longitudinal (fiber) direction
T	transverse (to fiber) direction
X	in-plane axial direction
Y	in-plane transverse direction
Z	thru the thickness direction

APPENDIX A

ANALYTICAL MODELS FOR THE CALCULATION OF WOVEN FABRIC PROPERTIES

The behavior of woven fabrics is dependent on several geometrical as well as material parameters. The analytical treatment of the woven fabric needs to be three-dimensional to account properly for the complicated reinforcement geometry of anisotropic fiber bundles. The mechanics of fabric reinforced composites are not as well defined as compared to laminated composite plates and hence our approach to the development of an analysis was to obtain bounds on the effective fabric properties based on energy principles. Various fabric models were considered and resulting calculations were compared with the results of finite element analyses in order to assess the validity of the different models. This appendix contains a brief description of each of the approaches and the results obtained.

LAYERED-PLATE FABRIC MODEL

The first step in analyzing the fabric was to define the geometry of a representative volume element. In this approach it was assumed that the yarn cross-sections remained circular. The overall structural behavior of the fabric was determined from the weave characteristics and properties computed for the representative volume element. The representative volume element of a five harness satin woven fabric is shown in figure A-1. The figure also shows several cross sections within the representative element. It can be observed from the figure that the weave is of the "over 4 under 1" pattern typical of the five harness satin weave. The cross-sections are similar to each other except for the relative position of the cross-over yarn.

A typical cross-section of the weave is shown in figure A-2. The cross-section of another weave would be similar except for the relative dimensions of the straight and cross-over yarns. The cross-section can be divided into several sub-layers each containing axial, transverse and oriented fiber bundles. The overall weave properties were computed by
treating each sub-layer as a portion of a laminated plate and integrating through the ply thickness.

The elastic properties of the woven fabric were determined by this approach using three different assumptions. First, it was assumed that each of the sub-layers had a linear strain field thru the thickness and a constant strain field along its length yielding an upper bound on stiffnesses. The second assumption led to a reduced upper bound based on a constant strain field along the length and a state of plane stress for each sublayer. The third assumption yielded a lower bound on the fabric stiffnesses by assuming a linear stress field thru the thickness and a constant stress field along the length for each sub-layer.Equations for the elastic properties under three different assumptions are presented in the following paragraphs.

Upper Bound Approximation

We assume that the element shown in figure A-3 is subjected to no surface tractions and that the assumed displacement fields hold everywhere inside the element. If the constitutive relations for the constituents are of the following form (in contracted notation)

$$
\begin{equation*}
\sigma_{i}=C_{i j} \epsilon_{j}+\gamma_{i} \Delta T \tag{1}
\end{equation*}
$$

then noting that $\epsilon_{33}=\epsilon_{13}=\epsilon_{23}=0$ everywhere, and summing the strain energies in all the constituents for the assumed displacement field, one obtains

$$
\begin{gather*}
U=\frac{A}{2}\left[A_{i j}^{1} \bar{\epsilon}_{i} \bar{\epsilon}_{j}+2 B_{i j}^{1} \bar{\epsilon}_{i} \bar{\kappa}_{j}+D_{i j}^{1} \bar{\kappa}_{i} \bar{\kappa}_{j}\right. \tag{2}\\
\left.+\left(\begin{array}{ll}
\Gamma_{i}^{1} & \bar{\epsilon}_{i}+\Delta_{i}^{1} \\
\bar{\kappa}_{i}
\end{array}\right) \Delta T\right]
\end{gather*}
$$

where repeated indices indicate summation over indices 1,2 and 6 . The upper bound stiffness matrices A^{1}, B^{1} and D^{1} are calculated in the following manner.

$$
\begin{gather*}
\left(A_{i j}^{1}, B_{i j}^{1}, D_{i j}^{1}\right)=\frac{1}{A} \int_{A} \int_{-h / 2}^{h / 2} C_{i j}\left(1, z, z^{2}\right) d z \tag{3a}\\
=\sum_{\ell=1}^{L}\left[\left(P^{\ell}, Q^{\ell}, R^{\ell}\right) \sum_{m=1}^{M(\ell)} C_{i j}^{\ell m} a^{\ell m}\right] \\
\left(\Gamma_{i}^{1}, \Delta_{i}^{l}\right)=\frac{1}{A} \int_{A} \int_{-h / 2}^{h / 2} \gamma_{i}(1, z) d z \tag{3b}\\
=\sum_{\ell=1}^{L}\left[\left(P^{L}, Q^{L}\right) \quad \begin{array}{c}
\sum=1 \\
M(\ell)
\end{array} \gamma_{i}^{\ell m} m_{a}^{\ell m}\right]
\end{gather*}
$$

In equations (3) the superscripts ℓm indicate material, m, in layer, ℓ, and $M(\ell)$ is the number of materials in layer ℓ. L is the total number of layers. Further

$$
\begin{align*}
& \mathrm{P}^{\ell}=\mathrm{h}_{1 \ell}-\mathrm{h}_{2 \ell} \\
& \mathrm{Q}^{\ell}=1 / 2\left(\mathrm{~h}_{1 \ell}^{2}-\mathrm{h}_{2 \ell}^{2}\right) \tag{4}\\
& \mathrm{R}^{\ell}=1 / 3\left(\mathrm{~h}_{1 \ell}^{3}-\mathrm{h}_{2 \ell}^{3}\right)
\end{align*}
$$

$h_{1 \ell}, h_{2 \ell}$ being the z-coordinates of top and bottom surfaces of layer ℓ.
$A_{i j}^{1}, B_{i j}^{1}, D_{i j}^{1}, \Gamma_{i}^{l}$ and Δ_{i}^{l} yield approximate values of $A_{i j}^{*}, B_{i j}^{*}, D_{i j}^{*} \Gamma_{i}^{*}$ and Δ_{i}^{*}, respectively. Moreover, the diagonal terms of the matrices $A_{i j}^{1}$ and $D_{i j}^{1}$ are upper bounds on the corresponding effective properties. Approximate expansions for average thermal expansions and curvatures can be obtained as

$$
\left[\begin{array}{c}
\alpha_{i}^{1} \tag{5}\\
\beta_{i}^{1}
\end{array}\right]=\left[\begin{array}{cc}
A^{1} & B^{1} \\
B^{1} & D^{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Gamma_{i}^{1} \\
\Delta_{i}^{1}
\end{array}\right]
$$

Reduced Upper Bound Approximation

An assumption which is used in laminated plate theory is that the stress in the z direction is equal to zero. In the problem under consideration, we may make the same assumption and obtain approximate expressions $A_{i j}^{2}, B_{i j}^{2}, D_{i j}^{2}$ for the effective properties by using reduced stiffnesses $C_{i j}^{\ell m}=C_{i j}^{\ell m}-C_{i 3}^{\ell m} C_{3 j}^{\ell m} / C_{33}^{\ell m}$ in place of $C_{i j}^{\ell m}$ in (3a). The expressions for the diagonal terms of A^{2} and D^{2} matrices are not strictly upper bounds on the corresponding effective properties and, therefore, we have introduced the term reduced upper bound.

Lower Bound Aproximation

In this formulation, instead of choosing an approximate displacement field, we assume the following stress field in the representative area element

$$
\begin{array}{r}
\sigma_{i}^{\ell}=\sigma_{i}^{\ell 0}+z \sigma_{i}^{\ell 1} \quad, \quad \ell=1,2, \ldots L \tag{6a}\\
i=1,2,6
\end{array}
$$

and $\sigma_{3}^{\ell}=\sigma_{4}^{\ell}=\sigma_{5}^{\ell}=0 \quad\left(\right.$ or, $\sigma_{33}^{\ell}=\sigma_{13}^{\ell}=\sigma_{23}^{\ell}=0$)
where $\sigma_{i}^{\ell}=$ the stress component i in the $\ell^{\text {th }}$ layer each of which is independent of the x and y coordinates.

The complementary energy for the assumed stress field representative area element can be expressed as

$$
\begin{align*}
\mathrm{U}_{\mathrm{c}}= & \sum_{\ell=1}^{L} 1 / 2\left[\mathrm{~F}_{\mathrm{ij}}^{\ell} \sigma_{i}^{\ell 0} \sigma_{j}^{\ell 0}+G_{i j}^{\ell}\left(\sigma_{i}^{\ell 0} \sigma_{j}^{\ell 1}+\sigma_{i}^{\ell 1} \sigma_{j}^{\ell 0}\right)\right. \\
& \left.+\mathrm{H}_{\mathrm{ij}}^{\ell} \sigma_{i}^{\ell 1} \sigma_{j}^{\ell 1}\right]+\left(\mathrm{e}_{\mathrm{i}}^{\ell} \sigma_{i}^{\ell 0}+\mathrm{f}_{i}^{\ell} \sigma_{i}^{\ell 1}\right) \Delta \mathrm{T} \tag{7}\\
& -\left\{\mathrm{P}^{\ell} \sigma_{i}^{\ell 0} \bar{\epsilon}_{i}+Q^{\ell}\left(\sigma_{i}^{\ell 0} \bar{\kappa}_{i}+\sigma_{i}^{\ell l} \bar{\epsilon}_{i}\right)+R^{\ell} \sigma_{i}^{\ell 1} \bar{\kappa}_{i}\right\}
\end{align*}
$$

where the repreated indices i, j indicate summation over 1,2 and 6 and,

$$
\begin{aligned}
& \left(F_{i j}^{\ell}, G_{i j}^{\ell}, H_{i j}^{\ell}\right)=\sum_{m=1}^{M(\ell)} \int_{A} \int_{-h / 2}^{h / 2} S_{i j}^{\ell m}\left(1, z, z^{2}\right) d z d A \\
& =A\left(P^{\ell}, Q^{\ell}, R^{\ell}\right) \sum_{m=1}^{M(\ell)} a^{\ell m} . \\
& e_{i}^{\ell}, f_{i}^{\ell}=\sum_{m=1}^{M(\ell)} \int_{a} \int_{-h / 2}^{h / 2} \sigma_{i}^{\ell m}(1, z) d z d A \\
& \\
& =A\left(P^{\ell}, Q^{\ell}\right) \sum_{m=1}^{\sum(\ell)} \sigma_{i}^{\ell m} a^{\ell m}
\end{aligned}
$$

In equation (8) A is the area of the element $P^{\ell}, Q^{\ell}, R^{\ell}$ and $a^{l m}$ are defined for approximation I, and $S_{i j}^{\ell m}, \alpha_{i}^{l m}$ are the complicances and thermal expansion coefficients for material m in layer ℓ. Minimization of U_{c} with respect to the unknows $\sigma_{i}^{\ell o}, \sigma_{i}^{\ell l}(i=1,2,6$ and $\ell=1, \ldots$) yields

$$
\begin{align*}
\sigma_{i}^{\ell o} & =F_{i j}^{\prime \ell}\left(-e_{j}^{\ell} \Delta T+P^{\ell} \bar{\epsilon}_{j}+Q^{\ell} \bar{\kappa}_{j}\right) \\
& +G_{i j}^{\prime \ell}\left(-f_{j}^{\ell} \Delta T+Q^{\ell} \bar{\epsilon}_{j}+R^{\ell} \bar{\kappa}_{j}\right) \tag{9}\\
\sigma_{i}^{\ell 1} & =G_{i j}^{\prime \ell}\left(-e_{j}^{\ell} \Delta T+P^{\ell} \bar{\epsilon}_{j}+Q^{\ell} \bar{\kappa}_{j}\right) \\
& +H_{i j}^{\prime \ell}\left(-f_{j}^{\ell} \Delta T+Q^{\ell} \bar{\epsilon}_{j}+R^{\ell} \bar{\kappa}_{j}\right)
\end{align*}
$$

where

$$
\left[\begin{array}{cc}
F^{\prime \ell} & G^{\prime \ell} \\
G^{\prime} \ell & H^{\prime \ell}
\end{array}\right]=\left[\begin{array}{cc}
F^{\ell} & G^{\ell} \\
G^{\ell} & H^{\ell}
\end{array}\right]^{-1}
$$

Substitution of equation (9) in (7) or evaluation of \bar{N}_{i} and \bar{M}_{i} with the help of (6a) and (9) yields the following approximate expressions for the effective properties.

$$
\begin{align*}
& A_{i j}^{3}=\sum_{\ell=1}^{L}\left[F_{i j}^{\prime \ell}\left(P^{\ell}\right)^{2}+2 G_{i j}^{\prime \ell} P^{\ell} Q^{\ell}+H_{i j}^{\prime \ell}\left(Q^{\ell}\right)^{2}\right] \\
& B_{i j}^{3}=\sum_{\ell=1}^{L}\left[F_{i j}^{\prime \ell} P^{\ell} Q^{\ell}+G_{i j}^{\prime \ell}\left\{P^{\ell} R^{\ell}+\left(Q^{\ell}\right)^{2}\right\}+H_{i j}^{\prime \ell} Q^{\ell} R^{\ell}\right] \\
& D_{i j}^{3}=\sum_{\ell=1}^{L}\left[F_{i j}^{\prime \ell}\left(Q^{\ell}\right)^{2}+2 G_{i j}^{\ell} Q^{\ell} R^{\ell}+H_{i j}^{\prime \ell}\left(R^{\ell}\right)^{2}\right] \tag{10}\\
& \Gamma_{j}^{3}=\sum_{\ell=1}^{L} P^{\ell}\left[F_{i j}^{\prime \ell} e_{j}^{\ell}+G_{i j}^{\prime \ell} f_{i}^{\ell}\right]+Q^{\ell}\left[G_{i j}^{\prime \ell} e_{j}^{\ell}+H_{i j}^{\prime \ell} f_{i}^{2}\right] \\
& \Delta_{j}^{3}=-\sum_{\ell=1}^{L} Q^{\ell}\left[F_{i j}^{\prime \ell} e_{j}^{\ell}+G_{i j}^{\prime \ell} f_{i}^{\ell}\right]+R^{\ell}\left[G_{i j}^{\prime \ell} e_{j}^{\ell}+H_{i j}^{\prime \ell} f_{i}^{2}\right]
\end{align*}
$$

The appoximate effective thermal expansion coefficients and curvatures are then expressed as

$$
\left[\begin{array}{c}
\alpha_{i}^{3} \tag{11}\\
\beta_{i}^{3}
\end{array}\right]=\left[\begin{array}{cc}
A^{3} & B^{3} \\
B^{3} & D^{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Gamma_{i}^{3} \\
\Delta_{i}^{3}
\end{array}\right]
$$

In this formulation, the diagonal terms of the matrices A^{3} and D^{3} yield lower bounds for the diagonal terms of A^{*}, D^{*} respectively.

The yarn properties were obtained from the constituent fiber and matrix properties and the fiber volume fraction using UNI, a MSC fiber bundle property prediction code based on the composite cylinders assemblage. The T300/Epoxy properties used for the analyses are listed in table A-1.

The next step in this approach was the determination of amounts of yarn in the different orientations: axial, transverse and cross-over. This is illustrated in figure A-4. It can be observed that the angle of cross-over can be determined in terms of the fabric ply thickness and the distance between two consecutive yarns. The calculated volume fractions were then used along with the three different assumptions to yield bounds on the overall elastic properties of the woven fabric.

The results obtained by using the layered-plate fabric model for plain weave and 8 harness satin fabrics are shown in figure A-5. The results
indicated very little difference in the in-plane elastic modulus between the plain weave and the 8 harness satin fabric based on both the upper and lower bounds. Also, the in-plane shear moduli of the fabrics were almost identical to the shear moduli of the unidirectional fiber bundles. The bounds were observed to be far apart so that it was not possible to ascertain the validity of the results. An improved lower bound was then obtained by subdividing the repeating element into layers parallel to the thru the thickness direction. This resulted in the fabric consisting of layers of $0 / 90$ and crossover material for 3 and higher harness satin fabrics.
Utilizing the geometry of the yarns as shown in figure A-2, appropriate volume fractions were calculated for the $0 / 90$ material and segments of the crossover. The fabric in-plane modulus was then obtained through a lower bound formulation by considering the stiffnesses and the volume fractions of the sub-layers. This resulted in higher values as compared to the one obtained earlier because in this approach the oriented yarns only affect the stiffnesses of the crossover region. Thus, although the lower bound results for the plain weave (two harness satin) fabric were identical for both approaches, the $0 / 90$ material without any crossover material improved the lower bound stiffnesses for higher harness number fabrics.

Another disadvantage with the layered-plate model was that the maximum prism volume fractions of the yarns was about 55-60\%, which meant that the fabric contained large amounts of interstitial matrix. Examining photomicrographs of $T 300 / 5208$ fabrics indicated that in actuality, the volume of interstitial matrix pockets was negligibly small and that the yarn flattened and changed shape along its length. Since the layered-plate fabric model did not yield very satisfactory results it was considered necessary to develop a geometrically compatible model. The following paragraphs contain a description of the approach and results obtained for the geometrically compatible model.
"NDPROP" MODEL

The basic assumption used in constructing the geometric model was that the yarn cross-sectional area remained unchanged while taking on various shapes along its length. Even though the shape of the cross-sections varied
continuously, it was assumed that the transition sequence within one repeating element could be represented by a few discrete shapes.

Based on these considerations, representative area elements were identified for commonly used weaves. These are shown in figure A-6. It can be observed from the figure that the 8 harness satin weave element is of the "over 7 under 1 " type and consists of 4 distinct shapes that the yarn must take along its length within its repeating length of 8 L . Here "L" refers to the yarn count, i.e., the average distance between successive yarns. It was assumed that the actual distance between any two successive yarns could be different from L, in order to accommodate changes in length, while keeping the overall length of the representative element unchanged. The representative elements of the other weaves were defined in a similar manner. For 3 and higher harness satin fabrics the number of distinct shapes of the yarn cross-section were kept unchanged. The lengths in which the transitions occurred were selected according to the repeating element geometry. For the plain weave fabric, another intermediate cross-section, a rectangle, was introduced to make the transition more gradual and realistic.

The sequence of transition within the representative area element for two typical fabric constructions is shown in figure A-7. The sequences for the higher harness satins can be readily extrapolated from that of the 3 harness satin fabric.

The next step in the procedure consisted of determining the required dimensions to define the repeating element completely. The weave parameters which were utilized to do this were: yarn cross-sectional area, fabric ply thickness and yarn count. In addition to these, it was necessary to assume a few other dimensions in order to make the geometry determinate. However, these assumptions were made in non-critical dimensions so that the end results were not affected significantly. Once the leading dimensions of the cross-sections were determined, the yarn cross-over angle, prism volume fractions of the bundle segments and the volume of the interstitial matrix pockets could be calculated. The complete transition sequences for 3 harness and plain weave fabrics are shown in figure A-8.

In order to compute the properties of the yarn from the properties of the unidirectional fiber bundle, each cross-section was broken down into several segments by joining each vertex to the centroid of the crosssection. Each fiber bundle was assumed to exist from a segment of one
cross-section to the corresponding segment of an adjoining cross-section. The procedure used to determine volume fractions and direction numbers is outlined in figure $A-9$. In the same manner the entire yarn could be broken down into various segments with their corresponding direction numbers and volume fractions. The volume fractions were normalized with respect to the repeating element volume and then multiplied by the total prism volume fraction to account for the interstitial matrix pockets.

The resulting set of volume fractions and direction numbers along with the unidirectional fiber bundle properties were fed into "NDPROP" which is an MSC computer code used to predict properties and strengths for a composite with multidirectional reinforcement. The upper bound properties were obtained by volume averaging globally transformed stiffnesses of the various bundle segments, corresponding to the constant strain assumption. The lower bound prediction of stiffnesses were obtained by volume averaging the transformed compliances of the bundle segments, the assumption being that the stresses in the longitudinal and transverse yarns are constant.

The upper and lower bound predictions of Young's moduli are shown for the plain weave and 8 harness satin fabrics in figures A-10 through A-13. The in-plane elastic modulus bounds are far apart even in this approach. The lower bound predictions for the two different fabric types are not significantly different for both in-plane and thru the thickness moduli. However according to the upper bound prediction, an increase in the inplane modulus is accompanied by a decrease in the thru the thickness modulus for the 8 harness satin as compared to the plain weave. The elastic moduli can be expected to approach the $0 / 90$ laminate moduli as the harness number increases.

The shear modulus predictions for the plain weave and 8 harness are shown in figures A-14 and A-15. The in-plane shear modulus predictions agree fairly well with the layered-plate fabric model predictions. For the plain weave, the transverse shear modulus is significantly higher than the in-plane shear modulus. The differences between in-plane and transverse shear moduli are much smaller for the 8 harness satin fabric.

The differences in the properties between the plain weave and 8 harness fabrics can be explained in general by the differences in amounts of thru the thickness reinforcement. The 8 harness satin properties are very similar to the properties of a cross-plied laminate, as Table 1 in the main
body of the report indicates. Hence, the 8 and higher harness satin fabrics would have the best in-plane properties and the plain weave fabric would have the best thru the thickness properties.

Although this approach led to reasonable trends in the results, the far apart bounds in the in-plane elastic moduli were a cause for concern. In order to determine which of the bounds gave a better representation of the fabric behavior a finite element analysis was conducted. For this analysis the plain weave fabric was utilized due to modeling ease.

FINITE ELEMENT ANALYSIS

The finite element model was a symmetric section of the plain weave repeating element of the geometrically compatible model. Linear threedimensional isoparametric finite elements were used in the analysis. Since the cross-section of the yarns varied within the repeating element, it was necessary to use solids with fairly complex geometries. Further, the interstitial matrix pockets were also modeled to prevent inaccuracies in the results due to the presence of voids in the model. The nature of the model and the applied boundary conditions resulted in stiffness matrices of very large bandwidth. Therefore, the finite model was made somewhat coarse (101 modes and 107 elements) for the sake of modeling ease and minimizing computer run times. The finite element model is shown schematically in figure A-16 along with the applied boundary conditions. The complete finite element model with all the element boundaries is shown in figure A-17.

The finite element results have been compared with the upper and lower bounds of the NDPROP model in figures A-18 and A-19. The analyses were conducted for four different volume fractions. Both the in-plane and thru the thickness moduli exhibited a consistent trend as can be observed from figures A-18 and A-19 respectively. The results appear to be reasonable and it can be observed that the finite element predictions are not significantly closer to either of the bounds. This indicates that neither the constant stress nor constant strain assumptions are good representations of fabric behavior. One of the reasons for the low in-plane elastic modulus obtained through the finite element analysis appeared to be the particular model geometry chosen with the high crossover angle of 53°. In order to study the
effects of the crossover angle and thereby the relative amounts of horizontal and oriented yarn segments, two dimensional finite element analyses were conducted. The repeating element cross-sections shown in figure A-6 were modeled for plane strain analyses. The modulus from the $2-D$ analysis was about 5% lower than that from the $3-D$ analysis for the original geometry (crossover angle $=53^{\circ}$). The model was therefore verified to be accurate enough to compare effects of geometry changes. The plain weave moduli were observed to be very strong functions of the crossover angle. For example, the modulus for the T300/Epoxy Plain Weave fabric ($v_{f}=0.60$) was calculated to be 4.10 Msi for a crossover angle of 53° and 6.96 Msi for an angle of 15°.

The 2-D plane strain analyses were also done for higher harness fabrics. The comparisons of the finite element results with those from the various approaches are presented at the end of this section.

Since the NDPROP and Layered-Plate model bounds were quite far apart, attempts were made to develop improved bounds based on a simplified fabric model. The following paragraphs described the analytical methodology and the results of this approach.

SIMPLIFIED FABRIC MODEL

The simplified fabric model consisted of four oriented yarn bundles with none of the bundles containing any straight horizontal segments. All four bundles were inclined at the same angle with respect to the thru the thickness direction and balanced in the in-plane direction, see figure A-20. An improved lower bound approach was formulated for this model based on the assumption that the transverse stresses in the bundles were the same as the state of stress in the interstitial matrix. Contributions of the longitudinal and transverse strands and the matrix material to the complementary strain energy were evaluated in terms of the applied in-plane stress in order to arrive at an improved lower bound for the in-plane elastic modulus. The upper bound calculations for this model were obtained in the same manner as for the NDPROP model.

The results of this approach are shown in figure A-21 for plain weave fabrics for different amounts of reinforcement. The orientation angle of the yarns was obtained from the fabric yarn count and ply thickness values
used for the other models. The finite element results could not be compared to these results on the same basis since the geometries of the two models were different. The simplified model is, in fact, spatially compatible only up to a total yarn prism volume fraction of 75%. Accordingly, the results shown in figure A-2l are for a 75% prism volume fraction and a bundle volume fraction of 60%. The bounds predicted by this approach are indeed much closer together.

The same model was also utilized to calculate thru the thickness moduli. The results are shown in figure A-22. It can be observed from this figure, that the predicted values are in good agreement with earlier approaches and the bounds are quite close.

CONCLUSIONS FROM MODELING EFFORTS

The comparison between the results of the various approaches are shown in figure A-23. Also shown in figure A-23 are the results of the work done in this area by Ishikawa and Chou, reference A-1. A review of their work indicated that three different models were used by them for the prediction of fabric elastic properties. The first model, termed the mosaic model, assumed that the fabric composite could be modeled as a assemblage of pieces of cross-ply laminates. The effect of the inclined transition region of the fabric was neglected in the mosaic model. The fiber undulation model included this effect and hence was thought to be more realistic for plain weave fabrics. The third model was the bridging model which employed a twodimensional repeating element of the fabric to account for the load transferring mechanisms in interlaced regions which are separate from one another, as in higher harness satin fabrics. The results of each of the three models are shown in Figure A-23.

It was observed from finite element analyses that the results approached the Upper Bound for low crossover angles. For fabrics of high quality (low interstitial matrix volume and low cross-over angles) the upper bound approaches will thus be appropriate. The "NDPROP" model is a geometrically compatible model and is a realistic three-dimensional representation of a woven fabric. Further, the "NDPROP" Upper Bound predicts trends that are reasonable and provides a complete set of fabric properties.

Therefore, the "NDPROP" Upper Bound was selected from among the various approaches to calculate woven fabric properties.

REFERENCES

A-1. Ishikawa, T. and Chou, T. W., "Stiffness and Strength Behavior of Woven Fabric Composites," Journal of Materials Science, 17, 1982.
Table A－1．Unidirectional T300／Epoxy Properties used for prediction of woven

しЪと＊0	SSE＊0	L9E＊ 0	TBE＊ 0	$\checkmark 6 \varepsilon^{\circ} 0$	$\mathrm{Z} 山_{n}$
$\varepsilon^{\bullet} 0$	$\varepsilon^{*} 0$	$\varepsilon^{*} 0$	$\varepsilon^{*} 0$	$\varepsilon^{\bullet} 0$	LI_{\wedge}
$0 \varepsilon 9^{*} 0$	$660^{\circ} 0$	$600^{\circ} 0$	ZEE＊ 0	$G L Z^{*} 0$	TSW ${ }_{\text {W }}$
ーとを＂	9てI＊T	$856^{\circ} 0$	$028{ }^{\circ} 0$	LOL＇O	T¢W ${ }_{\text {ck }}$
$\varepsilon^{\bullet} 0 乙$	$0^{\circ} \mathrm{L}$ L	$L^{*} \varepsilon \tau$	$\nabla^{*} 0$ T	OT ${ }^{\circ}$	ŢSW ${ }^{\text {，}}$
$9^{*} 0=\exists_{\Lambda}$	$G^{*} 0={ }^{\ddagger} \Lambda$	$\nabla^{\cdot} 0={ }^{ \pm}$	$\varepsilon^{*} 0={ }^{\exists}{ }_{\Lambda}$	$z^{*} 0={ }^{7} \Lambda$	K7xədoxd

Figure A-2. Cross-Section of 5 Harness Satin Layered-Plate Fabric Model.

Figure A-3. Representative Area Element RAE Containing Several Layers for Layered-Plate Fabric Model

$$
\begin{aligned}
& Y_{1}=T\left(\frac{1}{2 \cos \phi}-\frac{1}{4}\right) ; \quad X_{1}=T\left(\frac{1}{\frac{\cos \phi}{2 \tan \phi}}-\frac{1}{4} \tan \phi\right) ; X_{2}=X_{1} \cos \phi \\
& L=\frac{T}{\tan \phi}\left(\frac{1}{\cos \phi}-\frac{1}{2}\right) \\
& \phi \text { can be determined from above equation given } L \text { and } T \\
& \text { Volume of cross-over material: (} 2 \mathrm{X}_{2} \text {) (} \frac{T}{2} \text {) (L) (2N) } \\
& \text { Volume of material in RVE: } T \text { (NL) (NL) } \\
& \text { where } \mathrm{N}=\text { Harness number of weave }
\end{aligned}
$$

Volume fraction of cross-over material:

$$
v_{\phi}=\left(\frac{\beta}{2}-\frac{\tan \phi}{2}\right) \cos \phi / N \beta
$$

where $\quad \beta=\frac{\frac{1}{\cos \phi}-\frac{1}{2}}{\tan \phi}$
Figure A-4. Calculation of Volume Fraction of Cross-Over Material in Representative Volume Element, Layered-Plate Fabric Model.

Figure A-5. Woven Fabric In-Plane Elastic Properties versus Fiber Content, Layered-Plate Fabric Model.

NOTE: Indicated Cross-Sections are not drawn to scale.

FigureA-8. Transition sequences of (a) Plain Weave and (b) 3 Harness Satin

Where $\mathrm{A}=$ cross-sectional area of yarn
thickness.

and $h=$ one-half the fabric ply
Figure A-9. Approach for Calculating Direction Numbers and Volume Fractions for

Figure A-10.Predicted Bounds for Plain Weave Fabric In-Plane Elastic Moduli, NDPROP Model.

Figure $\bar{A}-11$. Predicted Bounds for Plain Weave Fabric Through-the-thickness Elastic Moduli, NDPROP Model.

Figure A-12. Predicted Bounds for 8 Harness Satin Fabric In-Plane Elastic Moduli, NDPROP Model.

Figure A-13. Predicted Bounds for 8 Harness Satin Fabric Through-the-thickness Elastic Moduli, NDPROP Model.

Figure A-14. Predicted Bounds for Plain Weave Fabric Shear Moduli, NDPROP Model.

Figure A-15. Predicted Bounds for 8 Harness Satin Fabric Shear Moduli, NDPROP Model.

$$
\begin{aligned}
& \text { Boundary Conditions: } \\
& \text { Surface } X=0, U X=0 \\
& \text { Surface } Y=0, U Y=0 \\
& \text { Surface } X=-L, U X \text { uniform } \\
& \text { Surface } Y=L \text {, UY uniform } \\
& \text { At }(0,0,0), U Z=0
\end{aligned}
$$

Figure A-16. Plain Weave Fabric Finite Element Model and Applied Doundary Conditions.

Figure A-17. Plain Weave Fabric Finite Element Model

Figure A-18. Comparison of Plain Weave Fabric InPlane Elastic Moduli Bounds with Finite Element Results, NDPROP Model.

Figure A-19. Comparison of Plain Weave Fabric Thru the Thickness NDPROP Model.

Figure A-20.Schematic Representation of Simplified Plain Weave Fabric Model

Figure A-21. Predicted Bounds for Plain Weave In-Plane Elastic Moduli, Simplified Model.

Figure A-22. Predicted Bounds for Plain Weave Thru the Thickness Elastic Moduli, Simplified Model.

FigureA-23. Predicted In-Plane Elastic Moduli of T300/ Epoxy Woven Fabrics ($v_{f}=0.60$) as a Function of the Weave Harness Number through Various Approaches.

APPENDIX B

LIST OF SYMBOLS
(As used in Appendix B)
E_{L}
$S_{i j k l}$
$v_{i j}$
$\sigma_{i j}$
σ_{f}
σ_{m}
τ_{m}
longitudinal Young's Modulus
compliance Matrix
volume fraction
strain tensor
stress tensor
allowable fiber stress
allowable matrix normal stress
allowable matrix shear stress

SUPERSCRIPTS

f	fiber
m	matrix
$*$	unidirectional composite
+	tension
-	compression
tu	tensile ultimate
cu	compressive ultimate

APPENDIX B

THE AVERAGE STRESS MODEL FOR THE ANALYSIS OF STRENGTHS OF
 WOVEN FABRIC COMPOSITES

An approach to evaluate the strengths of fabric composites was formulated utilizing the "NDPROP" Upper Bound model, described in Appendix A and the "Average Stress Model". This appendix contains a description of the "Average Stress Model" approach.

Utilizing the fabric geometrical parameters such as yarn count and ply thickness, total fiber content and fiber cross-sectional area within the yarns, the inputs of direction numbers and volume fractions of yarn bundle segments could be generated. The elastic properties of the fabric were determined using this input and the "NDPROP" code. The same input geometry was then used as the basis for the strength analysis.

The first step of the procedure involved the determination of stresses and strains in the various yarn bundle segments due to the applied stresses in the fabric composite. Conventional three-dimensional stress analysis was therefore utilized for this purpose.

Since each (warp or fill) yarn had been discretized into several bundles, it was believed that the failure analysis would be more realistic if it was done on a fiber and matrix level rather than on a yarn bundle level. Accordingly, the next step involved the determination of stresses within the constituent fiber and matrix for the different yarn bundle segments comprising the fabric composite. The "Average Stress Model" was utilized for this purpose. This model postulates that although the stresses in the fiber and matrix vary from point to point, the failure stress level depends on the magnitudes of the average stress states within the fiber and matrix. The formulation of the "Average Stress Model" and the associated equations are shown in Table B-1. It can be observed from the table that the matrix stresses can be represented as a function of the volume fraction and compliance matrices of the fiber, matrix and unidirectional composite. The inputs required for the stress analysis are comprised of the allowable fiber stresses, σ_{f}^{+}and σ_{f}^{-}and the allowable matrix stresses in tension, compression and shear, designated $\sigma_{\mathrm{m}}^{+}, \sigma_{\mathrm{m}}^{-}$and τ_{m}, respectively.

The maximum stress failure criterion was used in the strength analysis. The matrix stresses were converted into principal stresses and maximum shear stresses. Critical ratios were computed for matrix failure (tension, compression and shear) and fiber failure (tension, compression). Matrix failure corresponds to the initiation of cracking in the matrix and may not be catastrophic in most cases. Fiber failure, on the other hand, involves actual fiber breakage. In most cases, the composite can continue to carry loads even after the occurence of matrix failures. Therefore, the strength analysis procedure was of the sequential failure type. If the first failure was a matrix failure, the matrix properties for the appropriate yarn bundle were reduced and the analysis was continued until fiber axial failure occured. In some cases, fiber failure may not occur. In such cases, the strain may suddenly increase due to repeated matrix tensile and/or shear failures. Thus, ultimate strength was characterized either by fiber axial failure or the sudden increase in strain levels.

One of the limitations of this strength approach is that accurate constituent input strengths are needed. The fiber tensile allowable may be conveniently calculated from the measured fiber bundle tensile strength, $\sigma_{\mathrm{L}}^{\mathrm{tu}}$, according to the following equation

$$
\begin{equation*}
\sigma_{\mathrm{f}}^{+}=\frac{\sigma_{\mathrm{L}}^{\mathrm{tu}} \mathrm{E}_{\mathrm{L}}^{\mathrm{f}}}{\mathrm{E}_{\mathrm{L}}^{*}} \tag{B.1}
\end{equation*}
$$

The neat resin tensile, compressive and shear allowables, are not as readily available. The matrix tensile and shear allowables used in this program were obtained from reference B-l and were actually measured for the 3501-6 matrix material. The properties for the various brittle epoxies compatible with graphite fibers such as 5208,914 and 934 are expected to be very similar. The matrix compressive allowable strength was obtained from manufacturer's data sheets on various resins and is not very significant because it is high enough to prevent any matrix compressive failures.

The fiber compressive strength allowable presents more problems, however. In the present program, the compressive allowable was calculated from the following equation:

$$
\begin{equation*}
\sigma_{\mathrm{f}}^{-}=\frac{\sigma_{\mathrm{L}}^{\mathrm{cu}} \mathrm{E}_{\mathrm{L}}^{\mathrm{f}}}{\mathrm{E}_{\mathrm{L}}^{*}} \tag{B.2}
\end{equation*}
$$

where $\sigma_{L}^{c u}$ is the measured bundle compressive strength. The above equation will yield reasonable results if the available compressive strength data are for volume fractions close to those observed in the fabrics whose strengths are to be calculated and if the fabrics are not comprised of excessively wavy yarns. The compressive strength values used in (B.2) were for T300/Epoxy $\left(v_{f}=0.6\right)$ composites and hence the fiber compressive allowables used can be expected to yield reasonable values for only the higher harness satin fabrics. A consistent procedure to calculate compressive strengths of wavy yarn bundles based on the properties of the constituent fiber and matrix is required. This may then be used in (B.2) to obtain a reasonable value for σ_{f}^{-}. Typical values used for the strength analyses are shown in Table B-2.

REFERENCE

B-1. Zimmerman, R. S., Adams, D. F., and Walrath, D. E., "Investigation of the Relations Between Neat Resin and Advanced Composite Mechanical Properties", NASA CR-172303, November 1984.

Table B-1. Procedure for Determining Fiber and Matrix Stresses from Bundle Stresses Using the Average Stress Model
$v_{f} \sigma_{i j}{ }^{f}+v_{m} \sigma_{i j}^{m}=\sigma_{i j}{ }^{*}$
$v_{f} \epsilon_{i j}{ }^{f}+v_{m} \epsilon_{i j}{ }^{m}=\epsilon_{i j}{ }^{*}$

$\epsilon_{i j}{ }^{m}=s_{i j k 1}^{m} \sigma_{k 1}^{m} \quad \mid \quad$ Constitutive Stress-Strain Relations
$\epsilon_{i j}^{*}=S_{i j k 1}^{*} \sigma_{k 1}^{*}$
$\therefore \sigma_{i j}^{m}=\frac{1}{v_{m}}\left(B_{i j k l}\right)^{-1}\left[\left(\mathrm{~S}_{\mathrm{klmn}}^{\mathrm{f}}-\mathrm{S}_{\mathrm{klmn}}^{*}\right) \sigma_{\mathrm{mn}}^{*}\right]$
where $\left(B_{i j k l}\right)$ is the inverse of $\left(S_{i j k l}^{f}-s_{i j k 1}^{m}\right)$

Table B-2. Input Fiber and Matrix Strengths used for Fabrics Strength Analysis

T-300: $\quad \sigma_{\underline{f}}^{+}=350 \mathrm{ksi}$
$\sigma_{f}^{-}=330 \mathrm{ksi}$
Epoxy: $\quad \sigma_{m}^{+}=8.3 \mathrm{ksi}$
$\sigma_{\mathrm{m}}^{-}=27.0 \mathrm{ksi}$
$\tau_{\mathrm{m}}=8.0 \mathrm{ksi}$

APPENDIX C.

CALCULATOR PROGRAMS

LIST OF SYMBOLS

(as used in Appendix C)
constant used in equations for stresses in phases of composites

Young's modulus
shear modulus
plane strain bulk modulus
stiffness constant
shear strain
increment in stiffness due to Poisson's effects
extensional strain
Poisson's ratio
direct stress
shear stress

SUBSCRIPTS AND SUPERSCRIPTS

relates to shearing resistance
hybrid
lengthwise
thicknesswise
widthwise
attached to B as ${ }^{*} B$ indicates division by v_{f},
i.e, $\quad{ }^{x} B=\frac{B}{v_{f}}$
relates to properties for unidirectional reinforcements

A programmable hand-held calculator, such as the Hewlett-Packard 41-C is adequate for preliminary surveys of properties of 3-D composites. Four programs developed for the 41-C for such surveys are included in this appendix, as follows:

UNI Elastic Constants for Unidirectionally Reinforced Composites

HYZ Elastic Constants and Strengths for $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}}^{\circ} / 90_{\mathrm{T}}^{\circ} 3-\mathrm{D}$ Reinforcement Configurations with Y - and Z- Direction Filaments Hybrids

HY Same as HYZ with only Y-Direction Filaments Hybrid

HZ Same as HYZ with only Z-Direction Filaments Hybrid

UNI, derived from the equations of reference $C-1$ is contained as a subroutine in the other three programs. HYZ, HY and HZ, utilizes algebraic extensions of the effectiveness coefficient analysis of reference C-2. Resulting equations are given in Tables C-1 to C-9.

These programs yield results identical to those obtained with NDPROP upper bound when the following restrictions apply:
(1) All filaments are straight and un-crimped.
(2) There is no unsymmetric divergence from the $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}}^{\circ} / 90_{\mathrm{T}}^{\circ}$ configuration that produces coupling actions i.e. $0^{\circ} /+30^{\circ} /-$ $45^{\circ} / 90_{\mathrm{W}}^{\circ} / 90_{\mathrm{T}}^{\circ}$ is not permissible. As long as coupling is avoided, any arbitrary proportions of filaments may be used.

Printouts of the programs are given in Tables C-10 to C-12. Operational instructions are given in Tables C-13 to C-15.

REFERENCES

C-1 Rosen, B. W., Chatterjee, S. N., and Kibler, J. J., "An Analysis Model for Spatially Oriented Fiber Composites," ASTM STP 617, 1977.

C-2 Dow, N. F., "Directions for 3-D Composite Reinforcement I: Intimations of Isotropy," Proc. AIAA $21 s t$ Structural Dynamics, Structures and Materials Conference, May 1980.

Tables C－1．Equations for Unidirectional Stiffnesses

$$
\begin{aligned}
& s_{1 。}=\frac{E_{L}\left(1-\nu_{T W}\right)}{1-\nu_{T W}{ }^{-2 \nu_{L W}{ }^{W}{ }_{W L}}} \\
& \$_{2 。}=\frac{\nu_{L W} \mathrm{E}_{\mathrm{W}}}{1-\nu_{\mathrm{TW}}-2 \nu_{\mathrm{LW}}{ }^{\nu} \mathrm{WL}} \\
& s_{3}=\frac{\nu_{\mathrm{LW}^{\mathrm{E}}}}{}{ }^{1-\nu_{\mathrm{TW}}}{ }^{-2 \nu_{\mathrm{LW}} \nu_{\mathrm{WL}}} \\
& \$_{40}=\frac{E_{\mathrm{W}}\left(1-\nu_{\mathrm{LW}} \nu_{\mathrm{WL}}\right)}{\left(1-\nu_{\mathrm{TW}}{ }^{\left.-2 \nu_{\mathrm{LW}}\right)\left(1+\nu_{\mathrm{TW}}\right)}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \$_{6}=\frac{\mathrm{E}_{\mathrm{W}}\left(1-\nu_{\mathrm{LW}} \nu_{\mathrm{WL}}\right)}{\left(1-\nu_{\mathrm{TW}}{ }^{-2 \nu_{\mathrm{LW}}{ }^{2} \mathrm{WL}}{ }^{(1+\nu} \mathrm{TW}^{\prime}\right)} \\
& \$_{7 。}=G_{L W} \\
& \$_{8} .={ }^{G}{ }_{T W} \\
& \$_{9}=G_{L T}
\end{aligned}
$$

Table C-2. Equations for 3-D $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}}^{\circ} / 90_{\mathrm{T}}^{\circ}$ Stiffness es:
(1) All Filaments of Same Material

$$
\$_{4}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{4}+\frac{v_{f_{2}}}{v_{f}}\right) \$_{1_{0}}+\left(\frac{v_{f}}{v_{f}} \cos ^{4} \phi+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \$_{4 。}
$$

$$
+4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\$_{70}+\frac{\$_{20}}{2}\right)
$$

$$
\$_{5}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}{ }_{\phi}^{2}+\frac{v_{f_{2}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \$_{2 。}+\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{50}
$$

$$
\begin{aligned}
& \$_{1}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{4} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{1_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{Sin}^{4} \phi+\frac{v_{f_{2}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \quad \$_{4} \\
& +4\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \cos ^{2}{ }_{\phi}\right)\left(\$_{7_{0}}+\frac{\$_{20}}{2}\right) \\
& \$_{2}=\left[\frac{v_{f_{12}}}{v_{f}}\left(\operatorname{Sin}^{4} \phi+\cos ^{4} \phi\right)+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f}}{v_{f}}\right] \$_{2} \\
& +\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{5_{0}}+4\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi \cos ^{2} \phi\right)\left(\frac{\$_{10}+\$_{4_{0}}}{4}-\$_{7_{0}}\right) \\
& \$_{3}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \quad \$_{2} \\
& +\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi+\frac{v_{f}}{v_{f}}\right) \$_{5} .
\end{aligned}
$$

Table C-2. (cont.) Equations for $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}}^{\circ} / 90_{\mathrm{T}}^{\circ}$ Stiffnesses:
(1) All Filaments of Same Material

$$
+4\left(\frac{{ }^{\mathrm{f}_{12}}}{\mathrm{v}_{\mathrm{f}}} \operatorname{SIN}^{2} \phi \cos ^{2} \phi\right)\left(\frac{\$_{10}+\$_{4_{0}}}{4}+\frac{\$_{2}}{2}\right)
$$

$$
\xi_{8}=\left(\frac{{ }^{v_{f}}{ }_{12}}{v_{f}} \sin ^{2} \phi+\frac{{ }^{v_{f}} f_{2}}{v_{f}}+\frac{{ }^{v_{f}} f_{3}}{v_{f}}\right) \$_{70}+\left(\frac{{ }^{v_{f}}}{}{ }_{v_{12}} \cos ^{2} \phi+\frac{v_{f}}{v_{f}}\right) \quad \$_{8}
$$

$$
\$_{9}=\left(\frac{{ }^{v_{f}}}{}{ }_{v_{f 2}} \cos ^{2} \phi+\frac{{ }^{v_{f}}}{}{v_{1}}_{f}+\frac{v_{f_{3}}}{v_{f}}\right) \quad \$_{7}+\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi+\frac{{ }^{v_{f}}}{v_{f}}{ }_{f}\right) \$_{80}
$$

$$
\begin{aligned}
& \$_{6}=\left(\frac{{ }^{v_{f}}}{{ }_{v_{f}}}\right) \$_{1_{0}}+\left(\frac{{ }^{v_{f}} f_{12}}{v_{f}}+\frac{{ }^{v_{f}} f_{1}}{v_{f}}+\frac{{ }^{v_{f}}}{v_{2}}\right) \quad \$_{40} \\
& \$_{7}=\left[\frac{{ }^{v_{f}}{ }_{12}}{{ }_{v_{f}}}\left(1-4 \sin ^{2} \phi \cos ^{2} \phi\right)+\frac{{ }^{v_{f}}}{}{ }_{v_{f}}+\frac{{ }^{v_{f}}}{v_{f}}\right] \$_{7}+\left(\frac{{ }^{v_{f}}}{v_{f}}\right) \$_{8_{0}}
\end{aligned}
$$

Table C－3．Equations for 3－D $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}_{\mathrm{h}}}^{\circ} / 90_{\mathrm{T}}^{\circ}$ Configuration Stiffnesses：（2）2－Direction Hybrid

$$
\$_{3}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2}{ }_{\phi}+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \$_{2 。}+\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SiN}^{2}{ }^{2}\right) \$_{50}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{50}
$$

$$
\$_{4}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{4} \phi\right) \$_{1_{0}}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{1_{0}}+\left(\frac{v_{f}}{v_{f}} \cos ^{4} \phi+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \$_{4 。}
$$

$$
+4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\$_{7_{\mathrm{o}}}+\frac{\$_{2 \mathrm{o}}}{2}\right)
$$

$$
\begin{aligned}
& \$_{1}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{4} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{1 。}+\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{4} \phi+\frac{v_{f_{3}}}{v_{f}}\right) \$_{4 。}+ \\
& +\left(\frac{v_{f_{2}}}{v_{f}}\right) \underset{{ }_{40}}{\$_{h}}+4\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{Sin}_{\phi}^{2} \cos ^{2}{ }_{\phi}\right)\left(\$_{7 。}+\frac{\$_{2 。}}{2}\right) \\
& \$_{2}=\left[\frac{v_{f_{12}}}{v_{f}}\left(\operatorname{Sin}^{4} \phi+\cos ^{4} \phi\right)+\frac{v_{f}}{v_{f}}\right] \$_{2 。}+\left(\frac{v_{f}}{v_{f}}\right) \$_{2 \sigma}+\left(\frac{v_{f}}{v_{f}}\right) \$_{50} \\
& +4\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi \cos ^{2} \phi\right)\left(\frac{\$_{1 \rho}+\$_{4 \rho}}{4}-\$_{7 。}\right]
\end{aligned}
$$

Table C－3．（cont．）Equations for $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}_{\mathrm{h}}}^{\circ} / 90_{\mathrm{T}}^{\circ}$ Configuration Stiffnesses：（2）2－Direction Hybrid

$$
\begin{aligned}
& \$_{5}=\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi+\frac{v_{f_{3}}}{v_{f}}\right) \$_{2 o_{h}}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \underset{{ }_{h}}{ }+\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{5 。} \\
& \$_{6}=\left(\frac{v_{f_{3}}}{v_{f}}\right) s_{1 。}+\left(\frac{v_{f_{12}}}{v_{f}}+\frac{v_{f_{1}}}{v_{f}}\right) \$_{4 。}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{4 o_{o}} \\
& \left.s_{7}=\left[\begin{array}{lll}
v_{f_{12}} \\
v_{f} & (1-4 & \sin ^{2} \phi \\
\cos ^{2} \phi
\end{array}\right)+\frac{v_{f_{1}}}{v_{f}}\right] \$_{7 。}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{7 。} \\
& +\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{8_{0}}+4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\frac{\$_{1 。}+\$_{4 。}}{4}+\frac{\$_{2 。}}{2}\right) \\
& s_{8}=\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi+\frac{v_{f_{3}}}{v_{f}}\right) \$_{7 。}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{7_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{8 。} \\
& s_{9}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2}{ }_{\phi}+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) s_{7_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi\right) \$_{8_{0}}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{8_{0}}
\end{aligned}
$$

Table C－4．Equations for 3－D $0^{\circ} / \pm \phi^{\circ} / 90_{W}^{\circ} / 90_{\mathrm{T}_{\mathrm{h}}}$ Configuration Stiffnesses：
（3）3－Direction Hybrid

$$
\begin{aligned}
& \$_{1}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{4} \phi+\frac{v_{f}}{v_{f}}\right) \$_{1 。}+\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{4} \phi+\frac{v_{f}}{v_{f}}\right) \$_{4 。}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{4_{o}} \\
& +4\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \cos ^{2} \phi\right)\left(\$_{7_{0}}+\frac{\$_{1 。}}{2}\right) \\
& \$_{2}=\left[\frac{v_{f}}{v_{f}}\left(\sin ^{4} \phi+\cos ^{4} \phi\right)+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f}}{v_{f}}\right] \$_{20}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{5_{0}} \\
& +4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\frac{\$_{10}+\$_{4}}{4}-\$_{7 。}\right) \\
& \$_{3}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \quad \$_{20}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{20}+\left(\frac{v_{f}}{v_{f}} \sin ^{2} \phi+\frac{v_{f}}{v_{f}}\right) \quad \$_{50} \\
& \$_{4}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{Sin}^{4} \phi+\frac{v_{f_{2}}}{v_{f}}\right) \$_{1_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{4} \phi+\frac{v_{f}}{v_{f}}\right) \$_{4_{0}}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{4} . \\
& +4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\$_{7_{0}}+\frac{\$_{2 。}}{2}\right)
\end{aligned}
$$

Table C－4．（cont．）Equations for 3－D $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}}^{\circ} / 90_{\mathrm{T}_{\mathrm{h}}}^{\circ}$ Configuration Stiffnesses：（3）3－Direction Hybrid

$$
\$_{7}=\left[\frac{v_{f_{12}}}{v_{f}}\left(1-4 \operatorname{SIN}^{2} \phi \cos ^{2} \phi\right)+\frac{v_{f_{1}}}{v_{f}}+\frac{v_{f_{2}}}{v_{f}}\right] \$_{7 。}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{8_{0}}
$$

$$
+4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left(\frac{\$_{10}+\$_{40}}{4}+\frac{\$_{20}}{2}\right)
$$

$$
\$_{8}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi+\frac{v_{f_{2}}}{v_{f}}\right) \$_{70}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{7_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \cos _{\phi}^{2}+\frac{v_{f_{1}}}{v_{f}}\right) \quad \$_{8_{0}}
$$

$$
\$_{9}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{7 。}+\left(\frac{v_{f}}{v_{f}}\right) \$_{7_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi+\frac{v_{f_{2}}}{v_{f}}\right) \quad \$_{8_{0}}
$$

$$
\begin{aligned}
& \$_{5}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{Sin}^{2} \phi+\frac{v_{f_{2}}}{v_{f}}\right) \$_{2 。}+\left(\frac{v_{f}}{v_{f}}\right) \$_{2 。}+\left(\frac{v_{f}}{v_{f}} \cos ^{2} \phi+\frac{v_{f}}{v_{f}}\right) \$_{5 。} \\
& \$_{6}=\left(\frac{v_{f_{3}}}{v_{f}}\right) \quad \$_{1_{0}}+\left(\frac{v_{f}}{v_{f}}+\frac{v_{f}}{v_{f}}+\frac{v_{f}}{v_{f}}\right) \quad \$_{4 。}
\end{aligned}
$$

Table C－5．Equations for 3－D $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}_{\mathrm{h}}}^{\circ} / 90_{\mathrm{T}}^{\mathrm{h}}$ ．Configuration Stiffnesses： （4）2－and 3－Directions Hybrids

$$
\$_{2}=\left[\frac{v_{f_{12}}}{v_{f}}\left(\operatorname{SIN}^{2} \phi+\cos ^{2} \phi\right)+\frac{v_{f_{1}}}{v_{f}}\right] \$_{2 。}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{2 o}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{50} \$_{h}
$$

$$
+4\left[\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right]\left(\frac{\$_{10}+\$_{40}}{4}-\$_{70}\right)
$$

$$
\begin{aligned}
\$_{3}= & \left(\frac{v_{f}}{v_{f 2}}\right. \\
v_{f} & \left.\cos _{\phi}^{2}+\frac{v_{f_{1}}}{v_{f}}\right) \$_{2 。}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{2 \circ}+\left(\frac{v_{h}}{v_{12}} \sin _{f \phi}\right) \$_{5} \\
& +\left(\frac{v_{f}}{v_{f}}\right) \$_{5_{0}}
\end{aligned}
$$

$$
\$_{4}=\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{4} \phi\right) \$_{1_{0}}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{1_{0}}+\left(\frac{v_{f}}{v_{f 2}} \cos ^{4} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{4 。}
$$

$$
+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{4_{0}}+4\left[\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \cos ^{2} \phi\right)\left[\$_{7 。}+\frac{\$_{20}}{2}\right)
$$

$$
\begin{aligned}
& \$_{1}=\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{1_{0}}+\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}_{\phi}{ }^{2}\right) \$_{4_{0}}+\left(\frac{v_{f_{2}}}{v_{f}}\right. \\
& \left.+\frac{v_{f_{3}}}{v_{f}}\right) \underset{4_{\mathrm{h}}}{\$_{h}}+4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \cos ^{2} \phi\right)\left(\$_{7 。}+\frac{\$_{20}}{2}\right)
\end{aligned}
$$

Table C－5．（cont．）Equations for 3－D $0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}_{\mathrm{h}}}^{\circ} / 90_{\mathrm{T}_{\mathrm{h}}}^{\circ}$ Configuration Stiffnesses：（4）2－and 3－Directions Hybrids

$$
\begin{aligned}
& \$_{5}=\left(\frac{v_{f}}{v_{f}} \operatorname{SIN}^{2} \phi\right) \$_{2 。}+\left(\frac{v_{f}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \$_{20}+\left(\frac{v_{f}}{f_{f}} \operatorname{vas}^{2} \phi+\frac{v_{f}}{v_{f}}\right) \quad \$_{50} \\
& \$_{6}=\left[\frac{v_{f_{3}}}{v_{f}}\right) \underset{1_{0}}{ }+\left(\frac{v_{f_{12}}}{v_{f}}+\frac{v_{f_{1}}}{v_{f}}\right) \quad \$_{4_{0}}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{4_{0}} \\
& \$_{7}=\left[\frac{v_{f_{12}}}{v_{f}}\left(1-4 \sin ^{2} \phi \cos ^{2} \phi\right)+\frac{v_{f_{1}}}{v_{f}}\right] \$_{70}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{7_{0}} \\
& +\left(\frac{v_{f_{3}}}{v_{f}}\right){\left.\underset{80}{ }+4\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi \cos ^{2} \phi\right)\left[\frac{\$_{10}+\$_{40}}{4}+\frac{\$_{20}}{2}\right)\right]} \\
& \$_{8}=\left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi\right) \$_{7 。}+\left(\frac{v_{f_{2}}}{v_{f}}+\frac{v_{f_{3}}}{v_{f}}\right) \$_{7{ }_{h}} \\
& +\left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f}}{v_{f}}\right) \dot{\$}_{8}
\end{aligned}
$$

Table C-5.(cont.) Equations for $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90_{\mathrm{W}_{\mathrm{h}}}^{\circ} / 90_{\mathrm{T}_{\mathrm{h}}}^{\circ}$ Configuration Stiffnesses: (4) 2- and 3- Directions Hybrids

$$
\begin{aligned}
s_{9}= & \left(\frac{v_{f_{12}}}{v_{f}} \cos ^{2} \phi+\frac{v_{f_{1}}}{v_{f}}\right) \$_{7_{0}}+\left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{7_{0}} \\
& +\left(\frac{v_{f_{12}}}{v_{f}} \sin ^{2} \phi\right) \$_{8_{0}}+\left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{8_{0}}
\end{aligned}
$$

Table C-6. Definitions of Constants Used in Equations for Average Stresses

$$
\begin{aligned}
& B^{\prime}=G_{f_{L W}}\left(\frac{G_{L W}-G_{m}}{G_{f_{L W}}-G_{m}}\right)=G_{f_{L W}} \beta^{\prime} v_{f} \quad \underline{B}^{\prime}=G_{m}\left(\frac{G_{f_{L W}}-G_{L W}}{G_{f_{L W}}-G_{m}}\right) \\
& B^{\prime \prime}=G_{f_{T W}}\left(\frac{G_{T W}-G_{m}}{G_{f_{T W}}-G_{m}}\right)=G_{f_{t W}} \beta^{\prime \prime} v_{f} \quad \quad B^{\prime} \cdot \prime=G_{m}\left(\frac{G_{f_{T W}}-G_{T W}}{G_{f_{T W}}-G_{m}}\right) \\
& B_{L W}=\nu_{f_{L W}} K_{f}\left(\frac{K^{-}-K_{m}}{K_{f}-K_{m}}\right)=\nu_{f_{L W}} K_{f} \beta_{L W} v_{f} \quad B_{L W}=\nu_{m} K_{m}\left(\frac{K_{f}-K}{K_{f}-K_{m}}\right) \\
& B_{L}=\frac{{ }^{{ }_{f}}{ }^{E_{f}}{ }_{L}+\nabla}{2}+2 \nu_{L W}{ }^{B}{ }_{L W} \\
& { }^{B}{ }_{-L}=\frac{v_{m} E_{m}}{2}+2 \nu_{L W}{ }^{B}-L W \\
& { }^{B_{T}}=\frac{1}{2}\left(\frac{B_{L W}}{\nu_{\mathrm{f}_{\mathrm{LW}}}}+\mathrm{B}^{\prime \prime}\right) \\
& B_{-T}=\frac{1}{2}\left(\frac{{ }^{B_{L W}}}{\nu_{\mathrm{m}}}+{ }_{\left.-{ }_{-} \cdot{ }^{\prime}\right)}\right) \\
& B_{G}=\frac{1}{2}\left(\frac{B_{L W}}{\nu_{f_{L W}}}-B^{\prime \prime}\right) \\
& { }^{B}{ }_{-G}=\left(\frac{B_{L W}}{\nu_{\mathrm{m}}}-{ }_{B_{-} \prime}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathrm{B}^{\prime}+\mathrm{B}_{-}^{\prime}=G_{L W}=\$_{70}=\$_{9_{0}} \\
& \mathrm{~B}_{\mathrm{T}}+\mathrm{B}_{-\mathrm{T}}=\frac{\$_{40}}{2}=\frac{\$_{60}}{2}=\left(\frac{1-\nu_{\mathrm{LW}} \nu_{\mathrm{WL}}}{1+\nu_{\mathrm{TW}}}\right) \mathrm{K}_{\circ}
\end{aligned}
$$

Table C-6.(cont.) Definitions of Constants Used in Equations for Average Stresses

$$
\begin{aligned}
& \mathrm{B}^{\prime \prime}+\mathrm{B}_{-}^{\prime \prime}=\mathrm{G}_{\mathrm{TW}}=\$_{80} \quad \mathrm{~B}_{\mathrm{G}}+\mathrm{B}_{-\mathrm{G}}=\frac{\$_{50}}{2} \\
& \mathrm{~B}_{\mathrm{LW}}+\underline{B}_{\mathrm{LW}}=\frac{\$_{20}}{2}=\frac{\$_{30}}{2} \\
& K_{0}=\$_{40}-\$_{80}=\frac{\$_{40}+\$_{50}}{2}=\$_{50}+\$_{80}=\mathrm{B}_{\mathrm{T}}+\mathrm{B}_{-\mathrm{T}}+\mathrm{B}_{\mathrm{G}}+\mathrm{B}_{-\mathrm{G}} \\
& =2\left[\mathrm{~B}_{\mathrm{T}}+\mathrm{B}_{-\mathrm{T}}-\left(\mathrm{B}^{\prime \prime}+\mathrm{B}_{-}^{\prime \prime}\right)\right] \\
& \mathrm{B}_{\mathrm{L}}+\mathrm{B}_{-\mathrm{L}}=\frac{\$_{1_{0}}}{2}
\end{aligned}
$$

where the plane-strain bulk moduli are

$$
\begin{aligned}
& K_{0}=\frac{\frac{v_{f} K_{f}}{K_{f}+G_{M}}+\frac{v_{m} K_{m}}{K_{m}+G_{m}}}{\frac{v_{f}}{K_{f}+G_{m}}+\frac{v_{m}}{K_{m}+G_{m}}}=\frac{E_{W}}{2\left(1-\nu_{T W}-2 \nu_{L W} \nu_{W L}\right)}=\$_{4 。}-\$_{8 。}=\frac{\$_{40}+\$_{50}}{2} \\
& K_{f}=\frac{E_{f_{W}}}{2\left(1-\nu_{f_{T W}}{ }^{\left.-2 \nu_{f}{ }_{L W}{ }^{\nu} f_{W L}\right)}, \quad K_{M}=\frac{E_{m}}{2\left(1-\nu_{m}-2 \nu_{m}^{2}\right)}=\frac{G_{m}}{1-2 \nu_{m}}\right.} .
\end{aligned}
$$

and

$$
\nabla=4 v_{f} \frac{\left(\nu_{f_{L W}}-\nu_{m}\right)^{2}}{\frac{1}{K_{f}}+\frac{1}{v_{m}}\left(\frac{v_{f}}{K_{m}}+\frac{1}{G_{m}}\right)}
$$

Table C-7. Relationships Among Previously Identified Constants (ref.C-2) and Those Used Herein

$$
\begin{aligned}
\beta^{\prime} v_{f} & =\frac{G_{L W}-G}{G_{f_{L W}}-G_{m}} \\
\beta^{\prime} v_{f} & =\frac{G_{T W}-G_{m}}{G_{f}-G_{m W}} \\
\beta_{L W^{\prime}} v_{f} & =\frac{K-K_{m}}{K_{f}-K_{m}}
\end{aligned}
$$

$$
1-\beta_{L} v_{f}=\frac{\stackrel{B}{L}^{\left(1-\nu_{m}\right) K_{m}}}{(1)}
$$

$$
\beta_{\mathrm{T}} \mathrm{v}_{\mathrm{f}} \quad=\frac{\mathrm{B}_{\mathrm{T}}}{\left(\frac{1-\nu_{\mathrm{f}_{\mathrm{LW}}} \nu_{\mathrm{f}}}{1+\nu_{\mathrm{fL}}}\right) \mathrm{K}_{\mathrm{f}}}
$$

$$
I-\underline{\beta}_{T} v_{f}=\frac{B_{-T}}{\nu_{m} K_{m}}
$$

$$
\beta_{G} v_{f}=\frac{\mathrm{B}_{\mathrm{G}}}{\nu_{\mathrm{f}^{\mathrm{K}}}^{f}}
$$

$$
1-\beta_{-G} v_{f}=\frac{B_{-G}}{\nu_{m} K_{m}}
$$

Table C-8. Equations for Stresses in $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90^{\circ}{ }_{\mathrm{W}} / 90^{\circ}{ }_{\mathrm{T}}$ Configurations: (1) All Filaments of Same Material

Along the $\pm \phi^{\circ}$ filaments, for positive applied shear stresses -
$\sigma_{\mathrm{f}_{12}}=\epsilon_{\mathrm{L}+} \mathrm{S}_{\mathrm{L}+} * \mathrm{~B}_{\mathrm{L}}+\left(\epsilon_{\mathrm{S}_{\mathrm{W}+}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}} \quad \sigma_{\mathrm{m}_{12}}=\epsilon_{\mathrm{S}+}{ }_{\mathrm{L}+} * \mathrm{~B}_{-\mathrm{L}}+\left(\epsilon_{\mathrm{S}_{\mathrm{W}+}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}}$

Along the $\pm \phi^{\circ}$ filaments, for negative applied shear stresses -
$\sigma_{\mathrm{f}_{12}}=\epsilon_{\mathrm{S}_{\mathrm{L}-}} * \mathrm{~B}_{\mathrm{L}}+\left(\epsilon_{\mathrm{S}_{\mathrm{W}-}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}} \quad \sigma_{\mathrm{m}_{12}}=\epsilon_{\mathrm{S}_{\mathrm{L}-}} * \mathrm{~B}_{-\mathrm{L}}+\left(\epsilon_{\mathrm{S}_{\mathrm{W}-}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}}$

In plane, transverse to the $\pm \phi^{\circ}$ filaments, for positive applied shear stresses .

In plane, transverse to the $\pm \phi^{\circ}$ filaments, for negative applied shear stresses -
$\sigma_{\mathrm{f}_{12} \mathrm{~W}-}=\epsilon_{\mathrm{S}_{\mathrm{L}-}} * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{S}_{\mathrm{W}-}} * \mathrm{~B}_{\mathrm{T}}+\epsilon_{\mathrm{Z}} *{ }^{* \mathrm{~B}_{\mathrm{G}}} \quad \quad \sigma_{\mathrm{m}_{12}} \quad=\epsilon_{\mathrm{S}-} \mathrm{S}_{\mathrm{L}-}{ }^{* \mathrm{~B}_{\mathrm{LW}}}{ }^{+\epsilon} \mathrm{S}_{\mathrm{W}-} * \mathrm{~B}_{\mathrm{T}}+\epsilon_{\mathrm{Z}} * \mathrm{~B}_{\mathrm{G}}$
Thru the thickness transverse to the $\pm \phi^{\circ}$ filaments, for positive applied shear stresses -
${ }^{\sigma_{12}}{ }_{\mathrm{T}+}=\epsilon_{\mathrm{S}_{\mathrm{L}+}} * \mathrm{~B}_{\mathrm{LW}}{ }^{+\epsilon} \mathrm{S}_{\mathrm{W}+} * \mathrm{~B}_{\mathrm{G}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{T}}$
$\sigma_{\mathrm{m}_{12} \mathrm{~T}+}={ }^{-\mathrm{S}_{\mathrm{L}+}}{ }^{* \mathrm{~B}_{\mathrm{LW}}}{ }^{+\epsilon} \mathrm{S}_{\mathrm{W}+} *{ }_{-\mathrm{G}}+\epsilon_{\mathrm{z}} *{ }_{-\mathrm{B}}$

Table C-8. (cont.) Equations for Stresses in $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90^{\circ} \mathrm{W} / 90^{\circ} \mathrm{T}$ Configurations: (1) All Filaments of Same Material

Thru the thickness transverse to the $\pm \phi^{\circ}$ filaments, for negative applied shear stresses -

Along the 0° filaments -
$\sigma_{f_{1_{L}}}=\epsilon_{x} * B_{L}+\left(\epsilon_{y}+\epsilon_{z}\right) * B_{L W} \quad \sigma_{m_{1}}=\epsilon_{x} * B_{-L}+\left(\epsilon_{y}+\epsilon_{z}\right) * B-L W$

In plane transverse to the 0° filaments -
$\sigma_{f_{1}}=\epsilon_{x} * B_{L W}+\epsilon_{y} * B_{T}+\epsilon_{z} * B_{G} \quad \sigma_{m_{1}}=\epsilon_{x} * B_{-L W}+\epsilon_{y}^{* B}-T^{* \epsilon} z^{* B}-G$

TTT transverse to the 0° filaments -
$\sigma_{\mathrm{f}_{1_{T}}}=\epsilon_{\mathrm{x}}{ }^{* \mathrm{~B}_{\mathrm{LW}}}+\epsilon_{\mathrm{y}} * \mathrm{~B}_{\mathrm{G}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{T}} \quad \quad \sigma_{\mathrm{m}_{1_{\mathrm{T}}}}=\epsilon_{\mathrm{x}}{ }^{* B}-\mathrm{LW}+\epsilon_{\mathrm{y}} * \mathrm{~B}-\mathrm{G}^{+\epsilon} \mathrm{z}^{* B}-\mathrm{T}$

Along the in-plane 90° filaments -
$\sigma_{\mathrm{f}_{\mathrm{L}}}=\left(\epsilon_{\mathrm{x}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{y}}{ }^{* \mathrm{~B}_{\mathrm{L}}} \quad \sigma_{\mathrm{m}_{2}}=\left(\epsilon_{\mathrm{x}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{y}} * \mathrm{~B}_{-\mathrm{L}}$

In-plane transverse to the in-plane 90° filaments -
$\sigma_{\mathrm{f}_{2} \mathrm{~W}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{\mathrm{T}}+\epsilon_{\mathrm{Y}} * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{G}}$
$\sigma_{\mathrm{m}_{\mathrm{W}}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{\mathrm{T}}+\epsilon \mathrm{y}^{* \mathrm{~B}_{\mathrm{LW}}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{-\mathrm{G}}$

TTT transverse to the in-plane 90° filaments -
$\sigma_{\mathrm{f}_{2}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{\mathrm{G}}+\epsilon_{\mathrm{y}} * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{T}}$
$\sigma_{\mathrm{m}_{2} \mathrm{~T}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{\mathrm{G}}+\epsilon \mathrm{y}^{*} * \mathrm{~B}_{\mathrm{LW}}+\mathrm{E}_{\mathrm{z}} * \mathrm{~B}_{\mathrm{T}}$

Table C-8. (cont.) Equations for Stresses in $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90^{\circ} \mathrm{W} / 90^{\circ} \mathrm{T}$ Configurations: (1) All Filaments of Same Material

Along the TTT 90° filaments -

$$
\begin{equation*}
\sigma_{f_{\mathrm{L}}}=\left(\epsilon_{\mathrm{x}}+\epsilon_{\mathrm{y}}\right) * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{L}} \quad \sigma_{\mathrm{m}_{3}}=\left(\epsilon_{\mathrm{x}}+\epsilon_{\mathrm{y}}\right) * \mathrm{~B}_{\mathrm{LW}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{L}} \tag{13}
\end{equation*}
$$

Transverse (y-direction) to the $\operatorname{TTT} 90^{\circ}$ filaments -
$\sigma_{f_{3}}-\epsilon_{\mathrm{x}} * \mathrm{~B}_{\mathrm{G}}+\epsilon_{\mathrm{y}} * \mathrm{~B}+\epsilon_{\mathrm{y}} * \mathrm{~B}_{\mathrm{LW}} \quad \quad \sigma_{\mathrm{m}_{3_{W}}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{-\mathrm{G}}+\epsilon_{\mathrm{y}} * \mathrm{~B}_{-\mathrm{T}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{-L W}$
Transverse (x-direction) to the TTT 90° filaments -
$\sigma_{\mathrm{f}_{3_{\mathrm{W}}}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{\mathrm{T}}+\epsilon_{\mathrm{y}} * \mathrm{~B}_{\mathrm{G}}+\epsilon_{\mathrm{z}} * \mathrm{~B}_{\mathrm{LW}} \quad \quad \sigma_{\mathrm{m}_{3} \mathrm{~W}_{\mathrm{x}}}=\epsilon_{\mathrm{x}} * \mathrm{~B}_{-\mathrm{T}}+\epsilon_{\mathrm{y}} * \mathrm{~B}-\mathrm{G}^{+\epsilon_{\mathrm{z}}} * \mathrm{~B}-\mathrm{LW}$

Table C-9 - Equations for Stresses in $3-\mathrm{D} 0^{\circ} / \pm \phi^{\circ} / 90^{\circ} \mathrm{W}^{190^{\circ}} \mathrm{T}$ Configurations: (2) 2- or 3-Direction Hybrid.

These equations have the same form as those in Table C-8, but the B quantities are those for the filaments in question. Thus, in all cases equations (1) - (9) are unchanged. Equations (10) - (12) become $\sigma_{f_{2}}=$ $\left(\epsilon_{\mathrm{X}}+\epsilon_{\mathrm{z}}\right) * \mathrm{~B}_{\mathrm{LW}_{2}}+\epsilon_{\mathrm{y}}{ }^{* \mathrm{~B}_{\mathrm{L}}}$, etc. if the in-plane 90° filaments are hybrids, and equations (13) - (15) become $\sigma_{f_{3}}=\left(\epsilon_{x}+\epsilon_{y}\right) * B_{L W_{2}}+\epsilon_{z} * B_{L_{2}}$, etc. if the thru the thickness filaments are of the second material.

Table C－10．Print－Out of Program HY

	－ 5158	109： 51020	$15 i$ ST 4 A	2hil RCL 59	$25181 / 25$	3 LH 0¢ 62		40： 20.185
ar ${ }^{\text {a }}$	5 SEx E ！	18 ECL 27	152 RTCi 18	392 cit 37	250 ST／ 58	3 B ？		4if：
Qa 60.0	S5 Xea ie	18： $\mathrm{K}_{1} 61$	153 ST： 82	29］	25.7 RCC 2\％	363 ¢T＋65	355 ：	4 ABCL
940．EL－ 4 Y	54 FS？P1	$184 \mathrm{ST}+37$	154 ECi 71	2044 ECL 时	25d 5 T0 62	3842 CLL 29	354＋	的 5
as sit 82	55 Yeg il	185 RCL 19	155	285	255 CHS	385 RCL 35	355.50519	48.5 CCL 73
	5\％Cf 01	1\％	156 ST＋A3	296 RCL 83	2565906.3	386	356 RCLL 6.3	48 S ST＊ 32
AT ． Ag：$^{\text {a }}$	57 if 92	187 ECL gi	157 RCL M2	2977 RCL 68	257 RCL 25	387 STD 64	35785	4 A ？
的 3 T0：	58 8C： 1 L	185：	$158 \mathrm{ST}+88$	298	258 kc .37	308 ST＊ 75	358 ST0 37	4 CB
8\％ 5703	5957033	199 ST	159 3it 37	290	259	303 RCL 41	$5{ }^{\text {a }}$ a	489
！a 5s？${ }^{\text {a }}$	69893	119 SCL 6n	150 actay	210 ST0 25	269 8Cl 50	310 SH	36880	148
（1）炬的	51 Sm 36	111 ST－34	161 ST＋AS	2115		311 sT＊ 5	366 ST＊ 52	
	62 ST0 37	112 ST＊ 35	162 RCL 18	212 天CC 83	20^{2}	312	362%	41 ？
15858	$6.3 \mathrm{ST*} 66$	115 ST＊ 59	163 RCL 48		253	$3!7$ ST＋ 22	36．STil 4	415＋
！4 cin	641	116 PCK 3̂	$164 *$	21^{4}＊	264 ST－ 3 \％	314 $57-65$	36.4 रC	414
15 的边安		115	165 xCO 34		865 AL ？${ }^{\text {a }}$	Stesme	755 ST＊	45 PDC 4 n
16 \％ 5	$66^{519} 41$	116 37＋		216 CCL M8	26n sT／${ }^{\text {an }}$	315 ST＋ 7	366976	416 Stil 34
$\bigcirc 17501$	$6 \cdot 8 \mathrm{ST}+41$	117 354	67 Sir	217	267 aCl 5 5	$31^{\circ} \mathrm{CCL} 54$	367504	417 \％ $10 \cdot 3$
	68 dos	113 RCL 16	！6：	218	368	316 2CL 75	36 cxC 52	410 ST＊ Sa_{6}
19 \％${ }^{\text {\％}}$ 时	69.	$11^{9} \mathrm{Ra}$ ： 7	$10^{6} \cdot$	319 950 ！ 6	265 S7：38	31.3 S5	358	41\％9T＊ 38
20 50＇		129 Sit	179 REL 19	$32 \mathrm{ST6}$ 的	279 ST． 5	329	574 ST	40，¢at 6
2：an m	？Sit 3 m	121 si	17：ST： 40	ça Rec 36	27： xCa	324 STS ${ }^{\text {dit }}$	77：	4 c ¢ $\mathrm{ST} \times 3$
22 see is	72 Six 37	122 STt	172 Rel 45		272 RC，	3225008		42
23 Rric 昭	7 STH 37	$13^{3} \cdot$	173	225	27：		375 ST＊	
	74 ¢T	124 S7\％	174 ＋	$32^{4} 4$ 2f： 37	2748 CL	3245195	3742 Cl	4
25	7 STO	19594	175 ST	2\％ 5 cit 03	275	325 51／ 31	375 3	de5＋
26 RCC 88	76	12655	176 PCL 6	226：	276 St： 6	326 Sil 51	376576	42 REt 6：
27 － 270	775	127 ST	7706	$22 ?$	277 x 1 ） 18	$327 \mathrm{ST} / 5$	377 ST＊ 31	． 42
28 xa 5 ？	78370	125 RCL 19	178	22857030	2788016	32855	37\％ 3513	428
295704	70 ST：	129 RC	179 PCL 42	329 sT0 5R	879	329 ST／ 58	379	429
30 RCL 45	8 ST S－	139	188 FCL 18	239 KC！ 20	259 ST	$339 \mathrm{5T/7} 7$	358	139
315104	81×42	$13151+89$	181 ST＊ 44	231 RCL as	281 RCL 61	． 33 i	$38 i$	43：570 48
32 PCL 5 i	82 ＊	132 RCL 82	182 ＊	232．	282 RCL 6 ¢	． $332 \mathrm{ST/} 73$	382 STJ 4	432 RCL 5：
כ3 STS 7 7	83 sio	$133 \mathrm{STO} \mathrm{S}_{3}$	183 ＋	238 SCL	283 RCL 25	$333 \mathrm{ST} / 74$	${ }^{383}$ RCL 6	435 RCL 62
34 PCL 5 ？	84 REL	134 STO 48	184 RCL 19	234% \％ 2	284	， 334 RCL 67	384 RCL 46	434 5T＊ 78
35 xC 95	8559	135 pIL 3	185 RCL 63	235	285 ST－	335 51／ 39	385 ST0 66	435
3657015	26．	136654	18 f	235 ST／ 18	28 R RDN	336 ST／ 46	326 ¢TO 36	$43 i 59$
37 RCL 53	87 RCL	$137 \mathrm{Xi})$	$187 \mathrm{Si}+$	237 5\％ 48	287 PC．	337 ST／47	387 ST＊ 37	$437 \mathrm{ST} * 3$ \％
3857072	88 RCL	， 138 ST	188.	238 RCL 0 Q	288	$338 \mathrm{ST} / 57$	388	478 ECL 63
39 RCL 31	$89+$	139 STz	： 189 PaL 36	239 ST＊ 89	289 5T－52	$339 \mathrm{sT/} 58$	389 57 $51+87$	439 ST＊ 85
485505	990 ST＊	$1 \angle 4 \mathrm{RCL}$	19 PCCL 45	249 RCL 28	2908 PCL 55	349 ST／ 76	398 ST＋ 47	448 ST＊ 77
41 PCL 60	91．RCL．	141 ST＊ 88	191 ＊	241 ：	291 RCE 62	341 57： 75	391 PCL 63	44
$42350{ }^{4}$	$92+$	142 STO 55	$192+$	242 RCL 3	29851054	3420 ST／ 78	392 STO 32	442
43 BCL 47	$93 \mathrm{RCL} \mathrm{B9}$	$143 \mathrm{FCL}: 9$	193 X <145	$643 \mathrm{x}+2$	293	$345 \mathrm{ST} / 79$	393 ST0 38	443 5T＋+33
44570	94	144	194 RCL 3.5	244 －	294 RCCL 22	344 RCL 61	394 RCL 794	444 RCL 61
45 RCL 79	95	14	195	245 ST／ 38	235 RCL 61	34557043	395． 4	445
46 STO 78	96 RCL 18	146	196 PCL 44	245 ST／ 69	296 ST－54	346 RCL 79	$3965{ }^{5}+48$	446 RCL 72
47 RCL 46	97574	147 ST＋	$197+$	247 RCL ${ }^{\text {as }}$	297 ST＊ 65	347	397 ST0 56	447
4855039	98 RCL 81	148 L	$198 \mathrm{ST}+55$	248 RCL 13	296	348 RCL 62	398 RCL 61,44	448 RCL 95
49．FS9 9：	99	149 RCL	199 KCL 48	$249 \mathrm{x}+2$	$299+$	349 RCL 47	$399 \mathrm{ST}+32 \cdot 4$	449
	$198+$	158	289 ST＋ 37	258 －		350	ST	$458 \mathrm{ST}+82$

Table C－10（cont．）．Print－Out of Program HY

	58235076	559 RCL 22	694 ST－ 74			757		
$45 ? \times 17$	598.	55s 51	695 RCi 67	656	787 Si¢ 29	75	8895	
$45.5 \mathrm{ST}+88$	594 RCL 22	$555 \mathrm{Si*} 76$	$686 \mathrm{Si} / 68$	657 2	788	759 8．CL 24	8！9 51／ 28	Hitict 8
1548.1	595 ST＊ 04	556 ST＊	6 A7 STi 74	658	7 Pa KC： 26	760 牫 45	911 ST／ 57	
455 ST＊	$586 \mathrm{ST}=40$	557 RCL	688 2C．L 68	659 RCL 15	718 ST： 45	761 －	81？Lasty	$8 \mathrm{Si}^{2}$－
456 RCL	567 RCL 5	558 ＊	689 ST＊ 56	668	$7111 / 8$	762	$817 \times 10 \times 4$	545050
457 ：	588	$559+$	618 ST＊	61	712 RCL 87	76.7	814	865 20，
458 ST＋	509	560	611 ST＊	662	715 SI／ 34		815	
$459 \mathrm{ST}+89$	519 ST0 34	561 ST＋	$612.8 C L$	503 FCL	714 PCO		815 ST＊${ }^{\text {d9 }}$	
468 REL 78	511 RC： 84	562 8CL 52	613 CT	64 STO	715 ST＊！	766 RCO Ph	8172	She Stus
6！ST 88	51？RCL 65	$55^{5} 3$	614 RCL 18	365 RCL 1	716	RCL ${ }^{4}$	818 ST／	869 RCl 50
2 RCL 63	515 FCL 52	564 ST	615 PTN	666	717	768 RC． 34	819 RCL	S70 ST＋ 51
46.3 RCL	514＊	565 RCL 53	615＋LSL 10	60 ？	718 RC：	769	828 ST	871 20.5
454 ：	515	$566 \mathrm{ST}+$	$6 i^{3} 1$	668 ST	$7!9$ STE 29	778	$82{ }^{2}$	872 3i－57
465	$5!6 \mathrm{cr}$	5 So RCL	518570	669 ST	729	77：Su9	422	87 CCL
46 RCC 6	5！？RC，	565 RC：	619 ST0 34	675	72180		82\％Rta	
67 ST	518 mct	56 9 ¢	6508030	6715	720 5－6．	773 ST． 16	$8{ }^{2} 4$	8580
468 RCL 52	519	578 ST＊ 6	$62: 87054$	672	7 has ST／ x	774 STE 31	82 c S	830
$469 \mathrm{Si} \times 83$	52 Ra	57	622 ST0 6\％	7	${ }^{2}$		826	
478 ＊	52：	572 ST	523 RCL 23	T0	725	75	$82 ?$	87% 3Tx 63
1 Sitit	522 STi 64	573	${ }_{62}{ }^{2} \mathrm{ST}$	675	2665	777	823	379 9CL 6
4729508	52\％ CC － 4 b	574	625	675 ST： 54	72	7\％St	829	
475 SCL 62	524 FCi 65	575	626 FCL	577 RCL 88	728 Six 18		335 STz	
474 Pect 53	525 RCL 79	576	62 ？	673 ST＊ 54	729 ccl 13	784 CCL 34	331 ST\％	882 －
45.	526	577 RC	628 ST＊	679 St＊ 54	$738 \mathrm{SI}+87$	76159	33：	885 37 ${ }^{32}$
5 RCD 53	527	578 \％t	629 STU 79	639 ST	731 R	？92 ST－ 36	833	$884 \mathrm{FCl}{ }^{24}$
RCt Bd	52 x 价的	579 RC	639 CHS	681 ST＊ 60	732 ST0 96		834550	pr
478 ：	524950	588 Sir 78	63159047	St	$733 \mathrm{ST} * \mathrm{OF}_{7}$	784 ！	8355	885
sit	538.50078	581 RLL	632 RCL 21	603	734 RCL	785 ST0	835 ST－	88 CH S 6
48a＋	531 RCL	582 ST0 56	63.3 S5／	684	； 735	785	：837 RCL 52	880 RC
Si	532 RCL		654 FCL	685	736 STO 56	787	$838 \mathrm{ST}=67$	389 KTH
482 RCL 34	533 PCL	584 ST	$635 \mathrm{ST}+87$		737 RCL	788 ST	839 RCL	890×1 BC
483 ST＋ 89	534：	5855	636 RCL	687	738 RCL 67	739	848	R－
4345749	$535+$	56657	6374	688	739 ST／ 85	798 RCL	841 RCL 3	892 STO 01
485 RCL 61	$536 \mathrm{ST}+45$	587 RC	638 ＊	669 RCL 54	749	791 ¢T0 99	842 ，	＇893 RCL 12
486 RCL	537 RCL 22	588 STU 52	639	699 ST4 45	$74!$	TS2 STO 52	． 843 ST 31	894 STO B？
487 ：	538 RCL 57	589 RCL	648 ST＋ 54	691 ST： 51	$742 \mathrm{ST}+\mathrm{in}^{0}$	$7931 / 4$	844 ST－46	895 RCL 13
$488 \mathrm{ST}+37$	539 ＊	590 5T：	641 PCL 54	692 RCL 6	743 RCL 20	794 RCL	$845 \mathrm{ST}-47$	896 STO 83
489 RCL 61	548 ST＋ 36	591 ST	642 5T0 45	693×42	$744 \mathrm{ST}+87$		846	897 KCL 14
49 PCL 51	511 RCL 71	592 STO	643 RCL 12	694	745 PCL 24	796570	84755	898 ST0 04
491	542 ST－ 22	593 STh 58	$5441 / 8$	95	746 RCL 14	$797+$	848	399 RCL 15
$49231+3!$	$543 \mathrm{ST}+65$	594 RCL 14	645 RCL 1	$96 \mathrm{ST}+45$	747 STO	7984	845 ST	980 STO 85
493 RCL 76	544 RCL 76	595 RCL	645×12	697 RCL 45	748	799 ST＊	858 RCL	901 RTN
494 ST＋ 38	545 RCL 65	5961	647 PCL 11	698 RCL	74950	888	851	9R20LBL 81
495 RCL 78	546 ST＊ 52	597 ST／ 62	648 i	699	750 RCL 86		852	983 RCL 37
$496 \mathrm{ST}+32$	547 ST： 53	598 ST／ 74	$689-$	799 ST／	751 RCL 67	882 RCL	853 ST＊ 46	984×1521.
497 PCL 65	549 ST： 79	599 RCL 69	6554	781 RCL 13	$7521 \times$	883 Sit	854 ST＋ 79	985 STO 37
498 RC． 63	549 RCL 63	609 CHS	651 STO 10	782 ST0 3i	753	894 Xt 2		986 RCL 38
499.	$55 \mathrm{~m}+$	681 ST＊ 68	652 ＊	783 ST＋ 31	754 ST＋ 63	895 RCL 18	856 ST＋ 47	987 \％${ }^{24}$
5月， 37436	551 ST＊ 25	682 sT－68	655 RCL 15	78457051	755	886 ST＊ 86	857 RCL 34	988570
591 RCL	552 ＊	683 ST ＊ 74	$6541 / 8$	785 STO 52	7561	897	858 ST＊ 46	969 RTH

ORIGINAL PAGE IS
 OF POOR QUALTTY

Table C-11. Print-Out of Program HZ

Table C－11（cont．）．Print－Out of Program HZ

455 RCL 62 5RG RCL 65 E57 RCL 57
.456 RCL 53587 RCL 79 555 ST＋ 25
：457＊585＊559 RCL 65
＇458 RCL 63589 －$\quad 56 \mathrm{CT}+78$
 168＊． 511 570 $25562 \mathrm{Si}+78$
 $462+513$ PGL 56564 STO 56 $46 ? \mathrm{CT}+\mathrm{QE} 514$ RCL E5 565 RCL 68 464 RCL 34515 KCL 56 ： $566^{6} \mathrm{STO} 51$ 465 ST +89515 ＊$\quad 567$ ST＊ 54
$456 \mathrm{ST}+4 \mathrm{4} 517+\quad$ ：568 57： 75
4n7 RCL E $518 \mathrm{ST}+4 \mathrm{E} 569 \mathrm{ODL} 74$ 468 RO F 7.514 RCL 2 E 578 STO 52
 $47957+77521$ 572 Si 5！ 471 RN $6152250+3657$ ST＊ 52 472 RCL 5 5 5 RCL 715045 ST 57 47？5 524 ST－20575 Sin55 $474 \mathrm{ST}+3!52 \mathrm{~S}$ ST＋ 65575 RCL 14 $475 \mathrm{RCL} 76526 \mathrm{KCL}^{2} 76577^{2} \mathrm{KCL} \mathrm{A}$ 476 5T＋ 3 6 507 9Cl $65.578 /$
477 KCL 78 528 ST＊ 52579 5！／ 68
476 STt
473 RCL 65 53i Si is 581 RCL 59 488 RCL $6353!$ RCL 63582 CHS
$481+\quad 53 \hat{2}+\quad 583$ ST＊ 68 ； 482 5T： $36 \mid 533 \mathrm{ST}$ ： 25584 ST－ 68 482 RCL $84534 \neq 585$ ST＊ 74 ： 484 STO 76555 RCL 22.586 ST－ 74 485 ： 536 ST＊ 57587 RCL 67 486 RCL 22 537 5T＊ $75588 \mathrm{ST} / 68$ 487 ST＊g4 538 ST＊ 78 ； 589 ST／ 74 488 ST＊ 46539 RCL 51598 RCL 68 $489 \mathrm{RCL} 5154 \mathrm{C}=541 \mathrm{ST} 56$ 1499＊ $.541+\quad 592$ ST＊ 57 491＋ 542 X＜ 76593 ST＊ 66 49257034543 ST +85.554 RCL 74 493 RCL 86544 RCL 52595 ST＊ 58 ；494 RCL $65545+\quad .596$ RCL 10 495 RCL 52546 ST＋ 77.597 RTN
4\％＊$\quad 547 \mathrm{RCL} 53 \mathrm{j} 598+\mathrm{LBL}$－UN
$497+\quad 548$ ST +95.599 SF 80
 499 RCL B5 559 RCL 636911
580 RCL 53551 RCL 59682 STO 97 ［501： 552 ST： 85 ［683 STJ 34

 6t日 RLCL 23 bó RCL AO 712 ST： 10765 ST： 86814 RCL 99865 RCL 24 $61!$－$\quad 66^{\circ}$ ST＊ 54713 RCL $15764 * \quad 815$ STO 88， 866 RCL 63

 616 RCL 21 6́r Rt 718 RCL 11 765 ！829，87！－

 6Ji RCL 11 EK人

 635 STO 18685 STO $31737+\quad 78857048839$ RCL 25894 RÜL 14 $636 * \quad 68759+31735 \mathrm{ST}+35789 \mathrm{ST} 51848+\quad 89157084$ $637 \mathrm{RCL} 15638 \mathrm{STO} 5!739 * \quad 798$ x 42 341 ST＊ 46892 RCL 15
 539－\quad 690 RCL $23.741+\quad 792$ ST＊ $06843-\quad 894$ RTN 640 570 33 69！STO $23742 \mathrm{ST} / 35793 / 844$ ST＋ 47 8954L8L 81 $6412 \quad 692-\quad 743$ RCL $24734+\quad 845$ RCL 34396 RCL 37 642＊ 693 RCi 24744 ST＊ 35 195 ST＊ 86846 ST＊ 46.897 Kイン 21 643 RCL 15 594 ST＊ $45745 \mathrm{RCL} 45 ; 796 \mathrm{ST} / 28847 \mathrm{ST} * 47,898 \mathrm{STO} 37$ 64d ： $695 \mathrm{IK} \quad 346-\quad 797 \mathrm{FS}$ ？ 89.848 ST 79989 RCL 38
 $646+\quad 697 \mathrm{ST} / 34748 / 799 \mathrm{ST} / 57.858 \mathrm{RCL} 79991 \mathrm{STO} 38$ 647 RCL 24698 RCL 89.749 ST＊ 47.889 LRSIX 851 － 982 RTK
648 STO 48.699 ST＊ 18.758 ST＊ 79 891 XK 7 Y 852 STO 53 1649 RCL 15730 ： 751 RCL 86882 ／ 853 RCL 89 658 ST－48 7 Ri $+\quad 752$ RCL $24383-\quad 854$ RCL 47 651／：702 RCL 67753 RCL 34 ；804 ST＊ $89855-$
$652 \mathrm{ST}+45.785 \mathrm{ST}$ 2品 $754+\quad .8952 \quad 8565 T 052$
$653 \mathrm{ST}-60^{\circ} 784$／ $755 \mathrm{RCL} 24896 \mathrm{ST}, 57857 \mathrm{RCL} 55$ 654：i7a5 0CL 33756 STO 69，387 RLL 57858 5T＋ 51

ORIGINAL PAGE IS
 OF POOR QUALITY

Table C-12 (cont.). Print-Out of Program HYZ

 4.

 499 RC: 84549 ST+ 85599 ST* 656491
588 RCL 65558 RCL 52 6日B RCL $74: 658+$

699 1/X $749-\quad 799$ ST: 57849 RCL 88
:790 RCL 87 ITSA RCL 48 B8B LASTK

Table C-13. Operational Instructions for $H Y, H Z$, and HYZ. (Size 80 registers.)
Inputs
Filament properties MAIN HYBRID

Longitudinal Young's modulus	$\mathrm{E}_{\mathrm{f}_{\mathrm{L}}}$ STO 01	$\mathrm{E}_{\mathrm{f}_{\mathrm{L}_{2}}}$	STO	11
Transverse Young's modulus	$\mathrm{E}_{\mathrm{f}_{\mathrm{W}}}$ STO 02	$\mathrm{E}_{\mathrm{f}_{\mathrm{W}_{2}}}$	STO	12
Longitudinal Poisson's ratio	$\nu_{f_{L W}} \text { STO } 03$		STO	13
Longitudinal shear modulus	$G_{f_{L W}} \text { STO } 04$	${ }^{G} \mathrm{f}_{\mathrm{LW}_{2}}$	STO	14

Transverse shear modulus $\quad G_{\mathrm{f}_{\mathrm{TW}}}$ STO $05 \quad \mathrm{G}_{\mathrm{f}_{\mathrm{TW}}}$ STO 15

Matrix properties

Young's modulus	E_{m}	STO	21
Poisson's ratio	ν_{m}	STO	23
Shear modulus	G_{m}	STO	24

Table C-13. (cont.) Operational Instructions for $H Y, H Z$, and HYZ. (Size 80 registers.)

Outputs

See table C-14.

Notes
(1) $\quad \frac{{ }^{{ }^{f_{12}}}}{} v_{f} \quad+\frac{{ }^{v_{f}}}{}{ }_{v_{f}}+\frac{{ }^{v_{f_{2}}}}{v_{f}}+\frac{{ }^{v_{f_{3}}}}{v_{f}}=1$
(2) \quad 1-direction $=x-\operatorname{direction}, 2-=y, 3-=z$.

Table C-14. Operational Instructions for UNI. (Size 45 registers.)

Inputs
Filament properties
Longitudinal Young's modulus
Transverse Young's modulus
Longitudinal Poisson's ratio
Longitudinal shear modulus
Transverse shear modulus
Matrix properties
Young's modulus
Poisson's ratio
Shear modulus

Volume fraction reinforcement
Outputs

Longitudinal Young's modulus of composite	E_{L}	RCL	10
Transverse Young's modulus	E_{W}	RCL	20
Longitudinal Poisson's ratio of composite	ν_{LW}	RCL	30
Tranverse Poisson's ratio of composite	$\nu_{\text {LW }}$	RCL	40
Longitudinal (in-plane) shear modulus			
of composite	G_{LW}	RCL	35
Transverse shear modulus of composite	G_{TW}	RCL	45

Note
(1) $E_{f_{L}}>E_{m}$
(2) Filaments assumed transversely isotropic. - i.e.

$$
G_{\mathrm{E}_{\mathrm{TW}}}=\frac{\mathrm{E}_{\mathrm{E}_{\mathrm{W}}}}{2\left(1+\nu_{\mathrm{TW}}\right)}
$$

(3) Matrix assumed isotropic: - i.e. $G_{m}=\frac{E}{2\left(1+\nu_{m}\right)}$

Table C-15. Outputs from HY, HZ and HYZ

Register Output	$\begin{aligned} & 00 \\ & v_{f} \end{aligned}$	$\begin{aligned} & 10 \\ & E_{x} \end{aligned}$	$\begin{aligned} & 20 \\ & E_{y} \end{aligned}$	$\begin{aligned} & 30 \\ & E_{2} \end{aligned}$	$\begin{aligned} & 40 \\ & \nu_{\mathrm{xy}} \end{aligned}$	$\begin{aligned} & 50 \\ & \nu_{\mathrm{yz}} \end{aligned}$	$\begin{aligned} & 60 \\ & \nu_{z x} \end{aligned}$	70
Register Output	${ }^{01}$	$\begin{aligned} & 11 \\ & E_{f_{L}} \end{aligned}$	$\begin{aligned} & 21 \\ & E_{m} \end{aligned}$	$\begin{aligned} & { }^{31}{ }_{f_{1}} \end{aligned}$	${ }^{\sigma^{41}}{ }_{1_{W}}$	51 ${ }^{5} \mathbf{f}_{\text {1LW }}$	$\begin{aligned} & 61 \\ & { }^{\epsilon} \mathrm{x} \end{aligned}$	71
Register Output	${ }^{02}{ }_{\mathrm{f}_{2}}$	$\begin{aligned} & 12 \\ & E_{f_{W}} \end{aligned}$	${ }^{22}{ }_{\mathrm{S}_{\mathrm{L}}}$	${ }^{32}{ }^{\sigma_{\mathbf{f}_{2}}}$	${ }^{42}{ }_{f_{2}}$	$\begin{aligned} & 52 \\ & { }^{\top} \mathbf{f}_{2 \mathrm{LW}} \end{aligned}$	$\begin{aligned} & 62 \\ & \epsilon_{\mathrm{y}} \end{aligned}$	72
Register Output	${ }^{\sigma_{\mathbf{f}_{3_{W_{x}}}}}$	13 $\nu_{f_{\text {LW }}}$	$\begin{aligned} & 23 \\ & \nu_{\text {m }} \end{aligned}$	${ }^{33}{ }_{f_{3}}$	${ }^{\sigma_{\mathrm{f}_{3}}}$	53	$\begin{aligned} & 63 \\ & \epsilon_{z} \end{aligned}$	73
Register Output	${ }^{\sigma_{\mathrm{f}_{12}}}$	$\begin{aligned} & 14 \\ & G_{\mathrm{f}}^{\mathrm{LW}} \end{aligned}$	$\begin{aligned} & 24 \\ & G_{m} \end{aligned}$	${ }^{34}{ }_{\mathbf{f}_{12}+}$	44 $\sigma_{\mathrm{f}_{12}+}$	$\begin{aligned} & 54 \\ & { }^{T} f_{12}{ }^{+} \end{aligned}$	$\begin{aligned} & 64 \\ & \gamma_{\mathrm{xy}} \end{aligned}$	74
Register Output	${ }^{05}{ }_{\mathrm{f}_{12}}$	$\begin{aligned} & 15 \\ & { }^{G_{f}}{ }_{\text {TW }} \end{aligned}$	$\sigma_{m_{12}}$	$\begin{aligned} & 35 \\ & G_{x y} \end{aligned}$	$\begin{aligned} & 45 \\ & G_{y z} \end{aligned}$	$\begin{aligned} & 55 \\ & G_{z x} \end{aligned}$	65	$\begin{aligned} & { }^{75}{ }^{\mathrm{F}_{12}}{ }_{\mathrm{L}} \end{aligned}$
Register Output	06 $\sigma_{\mathrm{m}_{12}}+$	$\begin{aligned} & 16 \\ & \mathbf{v}_{\mathbf{f}_{12}} \\ & \mathbf{v}_{\mathrm{f}} \end{aligned}$	26	$\begin{aligned} & 36 \\ & \sigma_{m_{12}}+ \end{aligned}$	$\begin{aligned} & 46 \\ & \sigma_{\mathrm{m}_{12}}+ \end{aligned}$	$\begin{aligned} & 56 \\ & { }^{\tau} \mathrm{m}_{12_{\mathrm{LW}}^{+}} \end{aligned}$	$\begin{aligned} & 66 \\ & { }^{r} m_{12_{L W}^{+}} \end{aligned}$	$\begin{aligned} & 76 \\ & { }^{76} \mathrm{f}_{12}- \end{aligned}$
Register Output	07 $\sigma_{\mathrm{m}_{1}}$	$\begin{aligned} & 17 \\ & \frac{v_{f_{1}}}{v_{f}} \end{aligned}$	$\begin{aligned} & 27 \\ & \sigma_{x} \end{aligned}$	$\begin{aligned} & 37 \\ & \sigma_{m_{1 L}} \end{aligned}$	$\begin{aligned} & 47 \\ & \sigma_{\mathrm{m}_{1_{W}}} \end{aligned}$	57	67 v_{m}	77 $\sigma_{\mathrm{f}_{12}}$
Register Output	$\begin{aligned} & 08 \\ & \sigma_{\mathrm{m}_{2}} \end{aligned}$	$\begin{aligned} & { }^{18} \\ & v_{\mathrm{f}_{2}} \\ & \mathrm{v}_{\mathrm{f}} \end{aligned}$	$\begin{aligned} & 28 \\ & \sigma_{\mathrm{y}} \end{aligned}$	$\begin{aligned} & 38 \\ & \sigma_{m_{2}} \end{aligned}$	$\begin{aligned} & 48 \\ & \sigma_{m_{2}} \end{aligned}$	$\begin{aligned} & 58 \\ & { }^{+} m_{2} \text { LW } \end{aligned}$	68	$\begin{aligned} & 78 \\ & \sigma_{\mathrm{m}_{12 \mathrm{~W}}} \end{aligned}$
Register Output	$\begin{aligned} & 09 \\ & \sigma_{m_{3}} \end{aligned}$	$\begin{aligned} & 19 \\ & v_{f_{3}} \\ & v_{f} \end{aligned}$	$\begin{aligned} & 29 \\ & { }^{2} \mathrm{xy} \end{aligned}$	$\begin{gathered} 39 \\ \sigma_{m_{3}} \end{gathered}$	$\begin{aligned} & 49 \\ & \sigma_{m_{3}} \end{aligned}$	59	69	79 $\sigma_{m_{12}}$

NASA Contractor Report 178275
 Distribution List NAS 1-17205

NASA, Langley Research Center
ATTN: Research Information Office, Mail Stop 151
Hampton, VA 23665-5225

NASA, Langley Research Center
ATTN: H. Benson Dexter,
Mail Stop 188B
Hampton, VA 23665-5225

NASA John F. Kennedy Space Center
ATTN: Library, NWSI-D
Kennedy Space Center, FL 32899

National Aeronautics and Space Admin.
ATTN: RM/Samual Venneri
Washington, DC 20546

Air Force Wright Aeronautical Lab. ATTN: Larry G. Kelly, AFWAL/FIBC Wright-Patterson Air Force Base, OH 45433

```
U.S. Army Research & Tech. Lab.
Applied Technology Lab. (AVSCOM)
ATTN: J. Shipley
Fort Eustis, VA 23604
Department of the Navy
Naval Air Systems Command
ATTN: Mike Dubberley, Code AIR 530
    Room 980 JP2
Washington, DC 20361
```

The Boeing Company
Commercial Airplane Group
P.O. Box 3707
ATTN: J.T. Quinlivan, MS 6C-11
Seattle, WA 98124

NASA Ames Research Center ATTN: Library, Mail Stop 202-3
Moffett Field, CA 94035

```
Jet Propulsion Laboratory
4800 Oak Grove Drive
ATTN: Library, Mail 111-113
Pasadena, CA 91103
```

NASA Lewis Research Center 21000 Brookpark Road
ATTN: Library, Mail Stop 60-3
Cleveland, OH 44135

Air Force Wright Aeronautical Lab.
ATTN: F.D. Cherry, AFWAL/MLB
Wright-Patterson Air Force Base, OH 45433

Air Force Wright Aeronautical Lab.

ATTN: T.J. Reinhart, AFWAL/MLSE
Wright-Patterson Air Force Base, OH 45433

U.S. Army Aerostructures Directorate

 (AVSCOM), Mail Stop 266NASA Langley Research Center
Hampton, VA 23665-5225

Beech Aircraft Corporation
9709 East Central Avenue
ATTN: Ed Hooper
Wichita, Ks 67201

The Boeing Company
Commercial Airplane Group
P.O. Box 3707

ATTN: J.M. Hopper, MS 6C-11
Seattle, WA 98124

Bell Helicopter Company Box 482
ATTN: Charles Rogers
Fort Worth, TX 76101

```
General Electric Commpany
Space Division
P.O. Box }855
ATTN: C. Zweben
Philadelphia, PA 19101
L.J. Broutman & Associates
10 West 35th Street
ATTN: K.E. Hofer, Jr.
Chicago, IL 60616
```

McDonnell Aircraft Company
P.O. Box 516
ATTN: J.F. Harrell, Dept. 112D
Bldg. 220
St. Louis, MO 63166
Rockwell International Corporation
International Airport
ATTN: Dr. Leslie M. Lackman
Code 115001, GD14
Los Angeles, CA 90009
Texas A\&M University
Aerospace Engineering Department
ATTN: W.J. Horn
College Station, TX 77843
Lockheed Georgia Company
Department 72-77/Zone 450
ATTN: Sherrill Biggers
Marietta, GA 30063

General Dynamics Corporation
Fort Worth Division
P.O. Box 748

ATTN: W.D. Buntin, MZ 2633
Fort Worth, TX 76101

Grumman Aerospace Corporation
ATTN: Sam Dastin, MS Blo, Plant 25
Bethpage, NY 11714

Lockheed Aircraft Corporation
Lockheed-Georgia Company
86 South Cobb Drive
ATTN: W.E. Harvill, Dept. 72-77 Bldg. B-95, Zone 450
Marietta, GA 30063

Lockheed-Aircraft Corporation
Lockheed-California Company
ATTN: C.F. Griffin, Dept. 76-20 Bldg. 199
Burbank, CA 91520

Northrop Corporation
3901 West Broadway
ATTN: C. Rosenkranz, Manager Department 3851/82
Hawthorne, CA 90250

Gulfstream Aerospace Corporation
P.O. Box 2206

ATTN: G.S. Viteritti
Savannah, GA 31402

Atlantic Research Corporation
5390 Cherokee Avenue
ATTN: Dick T. Brown
Alexandria, VA 22314

University of Delaware Dept. of Mechanical Engineering ATTN: Tsu-Wei Chou
Newark, DE 19716

University of Delaware Dept of Mechanical Engineering ATTN: Scott Fowser Newark, DE 19716

Office of Naval Research
Code 1131
800 N. Quincy Street
ATTN: L. H. Peebles
Arlington, VA 22217

```
VPI\&SU
ESM Department
ATTN: Robert Simonds
Blacksburg, VA 24061
```

```
University of Delaware
Center for Composite Materials
201 Spencer Lab
ATTN: Dale Wilson
Newark, DE }1971
Naval Research Laboratory
Code 6383
ATTN: Irv Wolock
Washington, DC 20375
University of Maryland
Mechanical Engineering Department
ATTN: M.W. Hyer
College Park, MD 20742
David Taylor Naval Ship R&D Cntr.
Code 2844
ATTN: Tom Juska
ATTN: Tom Juska 
```

David Taylor Naval Ship R\&D Cntr.
Code 2844
ATTN: Roger M. Crane
Annapolis, MD 21402

Naval Air Development Center Code 6043
ATTN: Lee W. Gause
Warminster, PA 18974

Pepin Associates
97A Exchange Street, Suite 302
ATTN: John Pepin
Portland, MA 04101

Naval Surface Weapons Center
Nometallics Materials Division
ATTN: Dick Weller
Silver Spring, MD 20910

Drexel University
Department of Materials Engineering
32nd \& Chestnut Streets
ATTN: Christopher Pastore
Philadelphia, PA 19104

Fiber Materials, Inc.
Biddeford Industrial Park
ATTN: John Herrick
Biddeford, ME 04005

VPI\&SU
ESM Department
ATTN: Robert Jones
Blacksburg, VA 24061

Clemson University
Department of Mechanical Engineering
ATTN: John Kennedy
Clemson, SC 29631

Drexel University
Materials Engineering Department
32nd \& Chestnut Streets
ATTN: M.J. Koczak
Philadelphia, PA 19104

Textile Products
2512 West Woodland Drive
ATTN: John McGrath
Anaheim, CA 92801

NASA Goddard Space Flight Center
ATTN: Library
Greenbelt, MD 20771

NASA Dryden Flight Research Center ATTN: Library
Edwards, CA 93523
Stratford, CT 06497

NASA Lyndon B. Johnson Space Center ATTN: JM6/Library
Houston, TX 77058

NASA Marshall Space Flight Center
ATTN: AS24L/Library
Marshall Space Flight Center, AL 35812

Office, Chief of Research \& Dev.
Physical \& Engineering Sciences Div.
Department of the Army
ATTN: Richard L. Ballard
Washington, DC 20310

Air Force Wright Aeronautical Lab. ATTN: R.C. Tomashot, AFWAL/MLTN Wright-Patterson Air Force Base, OH 45433
U.S. Army Materials Tech.Lab.

ATTN: D.W. Oplinger
Watertown, MA 02172-2719

Textile Technologies, Inc.
ATTN: Ted Lynch
Hatboro, PA 19040

David Taylor Naval Ship R\&D Cntr. Code 1720
ATTN: Alex Macander
Bethesda, MD 20084

Bell Helicopter Company Box 482
ATTN: Henry Wilson
Fort Worth, TX 76101

United Technologies Corporation Sikorsky Aircraft Division
ATTN: Dave Lowry

Hexcel Corporation
11711 Dublin Blvd.
ATTN: Jim Bumgarner
Dublin, CA 94566

David Taylor Naval Ship R\&D Cntr. Code 2844
ATTN: E.T. Camponeschi
Annapolis, MD 21402

Lockheed Georgia Company
Department 72-77/Zone 450
ATTN: John Dickson
Marietta, GA 30063

```
Douglas Aircraft Company
Dept. E-84, Mail Code 36-90
3855 Lakewood Blvd.
ATTN: Ray Palmer
Long Beach, CA 90846
```

Atlantic Research Corporation
5390 Cherokee
ATTN: Della Scott
Alexandria, VA 22314

The Boeing Company	University of Delaware
Commercial Airplane Group	Center for Composite Materials
P.O. Box 3707	201 Spencer Lab
ATTN: Randy Coggeshall, MS 6C-11	ATTN: D. Wilkins
Seattle, WA 98124	Newark, DE 19716
The Boeing Company	Office of Naval Research
Vertol Division	Code 1132-SM
P.O. Box 16858	800 N. Quincy Street
ATTN: Erwin Durchlaub	ATTN: Y. Rajapakse
Philadelphia, PA 19142	Arlington, VA 22217
General Dynamics Corporation	General Dynamics
Convair Division	Convair Division
P.O. Box 85357	ATTN: Paul Hertzberg
ATTN: Dennis R. Dunbar, MZ 21-9501	San Diego, CA 92123
San Diego, CA 92138	
McDonnell Douglas Helicopter Company	JR\&E
Centinela and Teale Sts.	P.O. Box 7200
ATTN: , Donald H. Mancill,	ATTN: Julius Jortner
Bldg. 12, MS T136	Costa Mesa, CA 92626
Culver City, CA 90230	
Martin Marietta Corporation	Drexel University
P.O. Box 179	Materials Engineering Department
ATTN: John Lager	32nd \& Chestnut Streets
Denver, CO 80201	ATTN: Frank Ko
	Philadelphia, PA 19104
McDonnell Douglas Corporation	Textile Technologies, Inc.
3855 Lakewood Blvd.	ATTN: Janice Maiden
ATTN: Matt Stolle C1-E84, MC 36-52	Hatboro, PA 19040
Long Beach, CA 90846	
NASA Scientific and Technical Information Facility	
P.O. Box 8757	
Baltimore/Washington Int'l. Airport	
Maryland 21240	

Standard Bibliographic Page

16. Abstract

The use of woven fabrics as reinforcements for composites are considered in depth. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having thru the thickness reinforcements. Methodology developed is used parametrically to evaluate potentials for performance of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative compositeshaving biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.
17. Key Words (Suggested by Authors(s))

Fiber reinforced composites, Fabrics Mechanical properties, Laminates, Impact resistance.
19. Security Classif. (of this report) Unclassified
18. Distribution Statement

Unclassified - Unlimited

For sale by the National Technical Information Service, Springfield, Virginia 22161

[^9]
$\overline{-}$

[^0]: (1) + indicates tension
 (2) - indicates compression

[^1]: (1) + Indicates tension
 (2) - Indicates compression
 (1) First Failure

[^2]: - Layup: $[+45 / 0 /-45 / 90]_{3 s}$ for fabrics $[+45 / 0 /-45 / 90]_{6 s}$ for tape - Impact Energy 20 ft . -1 b .

[^3]: + indicates tension
 - indicates compression

[^4]: Fxamples of Triaxial Stitchbase Weaves, Prouiding Regularly Spaced
 Framples of Precisely Located by Locked Intersections of the Yarns. Through Yerns

[^5]: strengtns, -Iilustrated for $T-300 / 5208$ Composites Having Configurations

 ot TTT Reinforcement.

[^6]: stiffness.

 Figure 45.
 -valhation of Intrinsic In-こlane Properties of vinjti-ginectionai I-300 long fioat bjaxial weaves and braicis as plate eiements. For the 90° direction does nothing to increase the shear stiffness and。 P_{P} For the braids, increasing the angie O_{U} Y the
 shear T-300 composite compared to the aduminum adjoy at tne same snear III. 11.. diminution of In * tio with
 nree =́or

[^7]: Figure 52. Evaluations of Hybrids.-

 $$
 \begin{aligned}
 & \text { IV. Triaxial weave } 0^{\circ} / \psi^{\circ} \text {. Fevlar in the } 0^{\circ} \text { direction in tension. A } \\
 & \text { generally effetive configuration with no premature failure moders. }
 \end{aligned}
 $$

 evident.
 Potential gains by

[^8]: Figure 71. Evaluations of Hybrids.-
 in

 WITI.

[^9]: NASA Langley Form 63 (June 1985)

