

# ANALYSIS OF WOVEN FABRICS FOR

# REINFORCED COMPOSITE MATERIALS

Technical Final Report

MSC TFR 1715/0210

August, 1987

Prepared by:

٠

Norris F. Dow V. Ramnath B. Walter Rosen

Prepared for:

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665-5225

Gwynedd Plaza II, Bethlehem Pike, Spring House, PA • 215-542-8400

. ......

i

.

•

:

· · .

1 . . . . .

÷

#### <u>PREFACE</u>

This report, covering the work done for the NASA Langley Research Center on Contract NAS1-17205 during the period November 3, 1982 through April 30, 1987, was prepared by the Principal Investigator for MSC, Mr. Norris Dow, in collaboration with Mr. V. Ramnath and the Program Manager for MSC, Dr. B. Walter Rosen and other members of the MSC staff. The authors wish to express their appreciation to their collaborators and to Mr. H. Benson Dexter, who was the NASA Technical Representative, for their many contributions and technical discussions.

APPROVED BY;

B. Walter Rosen Program Manager

. . . . . . . İ ł • - - - ------

## TABLE OF CONTENTS

## <u>Page</u>

| INTRODUCTION                                             | 1    |  |  |
|----------------------------------------------------------|------|--|--|
| OBJECTIVES                                               | 2    |  |  |
| APPROACH                                                 | 4    |  |  |
| RESULTS                                                  | 6    |  |  |
| ANALYSIS METHODOLOGY                                     | 6    |  |  |
| POTENTIAL FOR PERFORMANCE                                | 7    |  |  |
| ADVANCED WEAVES                                          | 12   |  |  |
| DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION    |      |  |  |
| OF WOVEN-FABRIC-REINFORCED COMPOSITE STIFFNESS           |      |  |  |
| PROPERTIES                                               | 15   |  |  |
| BIAXIAL WEAVES                                           | 15   |  |  |
| "NDPROP" MODEL                                           | 15   |  |  |
| TRIAXIAL WEAVES                                          | 16   |  |  |
| EFFECTS OF THRU THE THICKNESS RUNNING ELEMENTS           | 17   |  |  |
| DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION    |      |  |  |
| OF WOVEN-FABRIC-REINFORCED COMPOSITE STRENGTHS           |      |  |  |
| COMPARISON OF ANALYSIS AND EXPERIMENT                    |      |  |  |
| Standard Weaves                                          | · 20 |  |  |
| Advanced Weaves                                          | . 24 |  |  |
| EVALUATION OF POTENTIALS FOR PERFORMANCE OF WOVEN FABRIC |      |  |  |
| REINFORCEMENTS                                           | 27   |  |  |
| APPROACH                                                 | 27   |  |  |
| EVALUATION PROCEDURES                                    |      |  |  |

# TABLE OF CONTENTS, (Cont'd)

:

.

1

1

:

•

i I

| EVALUATION PARAMETERS                   | 28 |
|-----------------------------------------|----|
| Tension                                 | 28 |
| Compression                             | 29 |
| EVALUATIONS                             | 30 |
| Tension                                 | 30 |
| Compression                             | 34 |
| HYBRIDS                                 | 36 |
| EVALUATIONS OF HYBRIDS                  | 37 |
| Tension                                 | 37 |
| Compression                             | 38 |
| DEVELOPMENT OF ADVANCED WEAVES          | 41 |
| BUMPY FABRICS                           | 41 |
| STITCHBASE WEAVES                       | 42 |
| THICK TRIAXIAL WEAVES                   | 43 |
| THE PERFECT WEAVE                       | 43 |
| GUIDELINES FOR IMPROVED FABRIC DESIGNS  | 44 |
| BIAXIAL FABRICS                         | 44 |
| Float Length                            | 44 |
| Braids                                  | 44 |
| TRIAXIAL FABRICS                        | 45 |
| Volume Fractions                        | 45 |
| Bumpy Fabrics                           | 45 |
| Stitchbase Weaves                       | 45 |
| Hybrids                                 | 46 |
| Multilayer Constructions                | 46 |
| OVERALL CONCLUSIONS AND RECOMMENDATIONS | 47 |
| ANALYSIS METHODOLOGY                    | 47 |
| POTENTIALS FOR PERFORMANCE              | 47 |
| ADVANCED WEAVES                         | 48 |
| REFERENCES                              | 49 |

# TABLE OF CONTENTS, (Cont'd)

| TABLES                                                                                            | 52  |
|---------------------------------------------------------------------------------------------------|-----|
| FIGURES                                                                                           | 67  |
| APPENDIX A - ANALYTICAL MODELS FOR THE CALCULATION OF WOVEN<br>FABRIC PROPERTIES                  | 153 |
| APPENDIX B - THE AVERAGE STRESS MODEL FOR THE ANALYSIS OF<br>STRENGTHS OF WOVEN FABRIC COMPOSITES | 193 |
| APPENDIX C - CALCULATOR PROGRAMS                                                                  | 201 |

•

.

•

•

.

.

## LIST OF SYMBOLS

(As used in main text, tables, and figures)

A area

- E Young's modulus
- G shear modulus

 $I_p^*$  indicator number for plate efficiency,  $I_p^* = \frac{E_p^{1/6} \sigma_{cu}^{1/2}}{\rho}$ 

where,  $E_{p} = 1/2 \frac{\sqrt{E_{x}E_{y}}}{1 - \sqrt{\nu_{xy}\nu_{yx}}} + G_{xy}$ 

L length

- v volume
- v Poisson's ratio

ρ density

- $\sigma$  stress
- $\phi$  direction angle for reinforcement

## SUBSCRIPTS AND SUPERSCRIPTS

| cu | compressive ultimate stress         |
|----|-------------------------------------|
| f  | fiber                               |
| fb | fraction fiber in fiber bundle      |
| fp | fraction packing of fiber bundles   |
| IC | measure of impact damage resistance |
| m  | matrix                              |
| su | shear ultimate stress               |
| tu | tensile ultimate stress             |
|    |                                     |

x,y,z; 1,2,3 axis directions

.

.

. . .

**H**ang **F** = 1 .

•

i

#### INTRODUCTION

A courtship is in progress between the centuries-old technology of textiles and the decades-old technology of composites. Stimulated initially by potential economies offered by the ease of handling stable, woven constructions (to begin with primarily 8-harness satins), and encouraged by their performance in prototype composite structures (for example, ref. 1), a beneficent interaction between these two technologies has been developing. Resulting, on the textile side, are advances in weaving capabilities to make available multi-directional (ref. 2) and complex three-dimensional configurations (ref. 3). On the composite side are: (1) advances in analysis methodology as required for the complex configurations becoming available, including effects due to yarn out-of-straightness (crimp) due to weaving and composite lay-up; (2) progress toward development of criteria for thru the thickness reinforcement to reduce both interlaminar shear and damage resulting from lateral impact (refs. 4 & 5); and (3) generation of guidelines for improved three-dimensional (multi-directional) weaves.

The present report covers activities in all three of the latter categories. Interactions with textile technology are suggested as appropriate.

The question indubitably arises - apart from economies from ease of handling in manufacture, why woven instead of the obviously superior straight filaments? Importantly, as will be shown, if the detail designs of weave and composite are proper - providing gently crimped yarns and avoiding matrix pockets and voids, there should be no loss in overall properties for wovens compared to straight filaments in multi-directional arrays. The total potential reinforcement for a given volume fraction is a constant, and actually, as will become increasingly evident in succeeding sections of this report, there are a number of corollary potentials for multi-directional properties offered by woven fabrics: -

- (1) Multi-directional reinforcement in a single ply
- (2) Potentials for interweaving two or more plies to eliminate interlaminar weaknesses
- (3) Possibilities of weaving each lamina's reinforcement to nest with adjacent laminae, to yield constructions of tailorable thicknesses with enhanced thru the thickness properties.

#### **OBJECTIVES**

The first objective of this study was the development of improved analytical methods for the prediction of the physical behavior of woven fabric reinforced composites. Here the interaction between textiles and composites is indeed important. Photomicrographs of fabric reinforced composites (Figure 1) reveal significant changes in reinforcement geometry from idealized weave structure. Emphasis was accordingly first directed toward the development of realistic models of the actual resulting constructions to use as bases for analyses. Analysis development was undertaken for all aspects of mechanical behavior. Progress toward that goal is reported in the sections "DEVELOPMENT OF ANALYTICAL METHODS FOR WOVEN-FABRIC REINFORCED COMPOSITE STIFFNESS PROPERTIES" AND "DEVELOPMENT OF ANALYTICAL METHODS FOR WOVEN-FABRIC REINFORCED COMPOSITE STRENGTHS." Comparison of the resulting property predictions with experiments and with predictions of previously available analysis are given in the following section .

1

:

Because of the demonstrated susceptibility of conventional composite laminates to damage from lateral impact (for example, ref. 5) studies were made of the influence of thru the thickness running reinforcement elements for the enhancement of thickness direction composite properties. Trade-offs among longitudinal, transverse (widthwise), and transverse (thicknesswise) properties were quantified. The objectives here were adequate definitions of both the potentials for property improvements in the thickness direction and types of configurations appropriate to provide such improvements. Thus a framework was established within which desired interactions between composite and textile design technologies might develop. Studies relating to the thru the thickness reinforcement problem are found in all sections of this report, including the composite/textile technology interactions in the sections "DEVELOPMENT OF ADVANCED WEAVES" and "GUIDELINES FOR IMPROVED FABRIC DESIGNS".

Improved fabric designs comprise the main objective. Through improvement in understanding of the detailed mechanics of reinforcement, combined with advances in fabric formation techniques, it does appear that impactresistant composites of enhanced performance capabilities can become accessible. Indeed progress is in evidence in both these areas: for example, the mechanics of in-plane reinforcement by fabrics as influenced by

fineness of weave has been demonstrated (ref. 6); the mechanics of thru the thickness reinforcement by finely spaced stitches has been demonstrated (ref. 7); and the weaving of triaxial fabrics hitherto considered not feasible has been demonstrated (ref. 8). Studies directed toward improved fabric reinforcement designs are presented in the final sections of this report.

#### APPROACH

The woven fabrics problem was divided into three areas, to be attacked sequentially:

- (1) Development of Analytical Methodology
- (2) Evaluations of Performance Potentials
- (3) Development of Advanced Weaves

At the outset it appeared that the state of the art of analysis of woven fabric reinforced composites needed to be both reviewed and supplemented to provide an adequately sound basis for the attack upon the following areas of investigation. The approach elected was a combined analytical/experimental investigation. The analysis was derived in large measure from the accumulated composite analysis technology that had led to references 9 and 10 and that has been incorporated in MSC's X-CAP computer code. Experiments were conducted at the Langley Research Center to help guide and confirm the further development of analytical methodology. Similarly, for the determination of performance potentials, structural/ material efficency analysis procedures presented in references 11 and 12 were used as the starting point for extension to the 3-D regime of thru the thickness reinforced composites. Thus in both the analysis development and the performance evaluation areas the approaches used were essentially a typical build-on-developed-technology approach. For the development of advanced weaves, however, a rather different approach was required.

Weavers, like magicians, are not wont to divulge their methodologies. Reference material corresponding to that available for analysis development and performance evaluation was not available to delineate the limits of weaving capabilities. Accordingly, the approach used for this third and most important phase of the problem was the two-fold one of

> Defining desirable weave configurations, based on the results of the first two areas of investigation.

ł

(2) Determining or inventing ways in which such configurations can be made.

As will be seen, limitations arising because of lack of weaving capability related almost entirely to fineness of weave. The ordinary multiharness loom can weave an astonishing variety of three-dimensional configurations. The recent development of a multi-harness triaxial loom (ref. 8) further extends the capability. Advanced textile technology appears capable of supporting advanced composite reinforcement technology.

#### RESULTS

The results obtained in each of the categories "Analysis Methodology", "Potentials for Performance", and "Development of Advanced Weaves" are summarized below. More detailed discussion of the development and implications of these results will be found in the body of the report.

### ANALYSIS METHODOLOY

- 1. A realistic model was generated to use as the basis for development of the analysis of the properties of woven-fabric reinforced composites. This model was derived based on photomicrographic studies (for example Fig. 1) of various woven-reinforced composites performed at the Langley Research Center. Use of this model led to the development of analytical procedures yielding elastic property predictions in good agreement with experiments for satin weaves in tension but less satisfactory agreement for plain weaves and in compression.
- 2. A sequential failure analysis, similar to sequential ply failure analysis for 2-D composite laminates, was developed for 3-D constructions. This analysis utilized "Average Stresses" on fibers and matrix (as described herein) to determine regions of first and subsequent fracture, and established methodology for accounting for resulting property degradations. Satisfactory correlations with experiment were demonstrated for this analysis in tension, - less so in compression.
- 3. The MSC NDPROP computer code was modified to incorporate the foregoing results. Thus stiffness and strength properties of composites incorporating multi-directional woven reinforcements are readily accessible. A copy of this code has been furnished to NASA Langley.

#### POTENTIALS FOR PERFORMANCE

#### 1. <u>Invariance</u>

The fact that certain combinations of calculated stiffness properties of composites are invariant for a fixed volume fraction reinforcement was employed to assist in the evaluation of tradeoffs in properties resulting from configuration changes. It was shown, for example, in reference 13, that if the reinforcing configuration provides three-dimensional isotropy, the magnitudes of the elastic properties achieved are identical regardless of the specifics of the configuration used. Similarly, it can be shown that the sum of the stiffnesses in the stiffness matrix (usually  $C_{11}, C_{12}$  etc. in the literature,  $\$_1$ ,  $\$_2$  etc. herein) is another such invariant - hence, the enhancement of any one stiffness (such as the thru the thickness stiffnesses.

#### 2. For Composites in Tension

a. The most effective approach for evaluating performance potentials of various configurations in tension was found to be a plot of tensile stress/density ratio  $\frac{\sigma_{\rm X}}{\rho}$  (as ordinate) vs. both shear stiffness/density ratio  $\frac{G_{\rm XY}}{\rho}$  and axial stiffness ratio  $\frac{E_{\rm X}}{\rho}$  (as abscissae) so that the ordinate value for a given configuration identifies both its shear and extensional properties. On such a plot, maximum values of  $\frac{\sigma_{\rm X}}{\rho}$ which meet required stiffness  $\frac{G_{\rm XY}}{\rho}$  and  $\frac{E_{\rm X}}{\rho}$  represent minimum weight. (For example figure 2. Detailed discussion of such evaluations is given in the section "Methodologies for Structural Efficiency Evaluations.") Figure 2 is a summary plot of this type, embodying many of the results of the evaluations performed, as noted in the following discussion.

- (1) Maximum values of  $\frac{\sigma_x}{\rho}$  (highest strength/weight ratio and lightest structure) always correspond to minimum shear stiffness requirements  $\frac{G_{xy}}{\rho}$  but not to minimum axial stiffness requirements  $\frac{E_x}{\rho}$ ). As is to be expected, appropriate reinforcement configurations approach simple unidirectionals as shear stiffness requirements decrease.
- (2) As shear stiffness requirements increase, off-axis

reinforcements are needed and values of  $\frac{\sigma_x}{\rho}$  decrease. Up to shear stiffness requirements approximately 2 to 2 1/2 times that provided by unidirectional reinforcements, simple angle-ply (up to about ±15°) constructions are the lightest. For higher shear stiffness, ± $\phi$ °/90° configurations emerge as most efficient (as shown in figure 3 for T-300; also found true for Kevlar, as noted in the section "Parametric Studies of Properties"; further, for the same shear stiffness T-300 yielded substantially lighter weights then Kevlar - the margin increasing with increasing stiffness requirements; hybrids were intermediate - Figures 4 and 5.

ŝ

- b. A plot such as figure 2 is also useful for comparing various approaches to design for tension with requirements for stiffness in shear - a common problem encountered in aircraft wings, helicopter rotor blades, propellers, etc. Thus, for example, figure 2 provides the following comparisons:
  - (1) Aluminum alloy (7075-T6) is not in contention with T-300/5208 in either the  $\pm \phi^{\circ}$  or the  $\pm \phi^{\circ}/90^{\circ}$

configuration. If additional requirements such as 3-D isotropy are encountered, however, the aluminum alloy emerges superior. Similarly, if substantial thru the thickness reinforcement is required, the advantage of T-300/5208 over aluminum is greatly reduced or lost completely. For example, the Omniweave braids (ref.14) either in the basic "diagonals of a cube" configuration  $(OM_4 \text{ in fig. 2})$  or with a fifth (axial) reinforcement direction added  $(OM_5)$ , while providing good tensile strength values if loaded along a reinforcement direction, are deficient in shear stiffness. If the braids are oriented for maximum shear stiffness (the bottom point on the figure) they are deficient in tensile strength.

- (2) If stiffness is not a criterion, figure 2 shows that E-Glass is in contention for tensile loadings. The tensile strength/density ratio is superior to aluminum, but the strain at failure is approximately five times as much. Axial stiffness is more apt to be a limitation for glass than for aluminum or for any of the other fibers considered.
- c. The invariance of the sum of the terms in the stiffness matrix demands a penalty in other stiffnesses for an increase in thru the thickness stiffness. This penalty is rather attenuated by being distributed among the various other stiffnesses so that the effect on any one - such as the longitudinal or shear stiffness is relatively small. For example, for a typical quasi-isotropic 2-D configuration the transfer of enough reinforcement material to the thru the thickness direction to produce a 1% increase in the thru the thickness-direction stiffness,  $E_z$ , results in less than 0.1% decrease in axial stiffness,  $E_x$ , and shear stiffness,  $G_{xy}$ . (See the section "Effects of thru the thickness Reinforcements" herein.)

While such stiffness penalties are orderly and small, effects on structural performance in some cases can be substantial and cannot be readily anticipated. The addition of thru the thickness-running elements can induce new failure modes which can be particularly degrading of most efficient configurations. For example, for a  $0^{\circ}/\pm 15^{\circ}$  2-D configuration putting 10% of the reinforcement material in the thru the thickness direction can reduce the value of axial

strength/density,  $\frac{\sigma_{\rm X}}{\rho}$ , by 25% (see figure 6) approximately. While the corresponding reduction for a ±15°/90° configuration is only about 16% (see figure 7), it is still greater than the percentage of material employed thru the thickness. Thru the thickness reinforcement demands thorough design and analysis for most effective performance.

Hybrids play a role in the thru the thickness reinforcement problem. Here again adequate design and analysis is important. For example,  $0^{\circ}/\pm15^{\circ}$  T-300 composites with 10%

Kevlar thru the thickness show only about 11% loss in  $\frac{x}{\rho}$  compared to the simple 2-D configuration (c.f. 25% for all T-300 as above). Reversing the constituents to 0°/+15° Kevlar with 10% T-300 thru the thickness, however, is a disaster -

nearly 50% loss in  $\frac{\sigma_x}{\rho}$  due to the reduced overall stiffnesses provided by the Kevlar and the reduced compliance to transverse cracking provided by the T-300. See figures 8 and 9. Totally apart from its inherent toughness, Kevlar appears most promising, if properly used, as a thru the thickness constituent.

#### 3. For Composites in Compression

(a) In compression, material strength/density values  $(\frac{\sigma_X}{\rho})$  are not the adequate measures of performance that values of  $\frac{\sigma_X}{\rho}$  are in tension. A measure that accounts for buckling

resistance as well as strength is required. Such a measure is the "Indicator Number" derived in reference 15 and used extensively in references 12 and 16. The plate buckling Indicator Number  $I_p^* = \frac{E^{1/6}}{p} \frac{\sigma^{1/2}}{cu}$ , considered in detail in the section "Parametric Studies of Properties" herein, is accordingly used here to provide a plot for compressive properties (figure 10) similar to Figure 2 for tension.

Results of evaluations from Figure 10 are as follows:

- (1) Maximum values of  $I_p^*$  (lightest structures) always correspond to minimum shear stiffness requirements  $\frac{G_{xy}}{\rho}$  (but not to minimum axial stiffness requirements  $\frac{E_x}{\rho}$ ). As is to be expected, configurations appropriate for such requirements approach simple unidirectionals.
- (2) As shear stiffness requirements increase, off-axis reinforcements are needed and values of  $I_p^*$  decrease. The  $\pm \phi^{\circ}/90^{\circ}$  configuration was found to be the most effective for all shear stiffness requirements with either graphite or Kevlar reinforcements.
- (3) Comparisons of Indicator Numbers for T-300/5208 2-D constructions with other reinforcement configurations and aluminum alloy confirm the superiority of T-300 for compressive applications. The gains possible compared to aluminum or 3-D constructions like Omniweave  $(OM_4, OM_5)$  are indeed substantial.
- (4) The Indicator Number provides a direct measure of the performance penalty associated with the addition of thru the thickness reinforcement. The magnitude of the decrease is summarized by the plot of Figure 11 for a 2-D quasi-isotropic configuration. The value of the

decrement in  $I_p^*$  for an increment in thru the thickness reinforcement increases as the amount of thru the thickness reinforcement increases. When the total amount of thru the thickness reinforcement is 1/10 of the total in the configuration, the decrement is 1/10 of 1% for each 1% increment in the amount of thru the thickness reinforcement. When the amount of thru the thickness reinforcement is 4/10 of the total, the decrement in  $I_p^*$ increases to 3/10 of 1%. Typical results of deploying 1/10 and 2/10 of the total volume fraction reinforcement thru the thickness are illustrated in Figure 12 for the  $\pm \phi^{\circ}/90^{\circ}$  configuration.

#### ADVANCED WEAVES

Progress was made toward the definition of weaving concepts which both capitalize on advances in textile technology and are most appropriate for composite reinforcement, as follows:

(1) <u>Nesting</u>. In order to take advantage of the inherent flexibility of construction provided by laminations, a "bumpy" fabric construction was proposed (Figure 13) comprising auxiliary warps running atop, or on both faces of an essentially plain weave base fabric. Stacking such constructions provides overlapping, thru the thickness yarns as illustrated in Figure 14. First samples of such constructions, woven of T-300 carbon yarns by Textile Technologies, Inc., showed adequate dimensional consistency for nesting, volume fraction reinforcements of over 50 percent and performance characteristics consistent with such volume fractions (see Figures 2 and 10). While the area of damage from lateral impact for the nested construction was found to be smaller than for equivalent ordinary laminates, strengths after such damage were not increased. Photomicrographs suggested that the bumps were not bumpy enough. In addition, the weaver suggested that the tightly woven plain weave base fabric (18 x 18 yarns/inch) may

have suffered substantial fiber damage during the weaving operation.

- (2) <u>Second Generation Bumpy Fabric.</u> A second generation bumpy fabric was designed in light of the foregoing observations (Figure 15). In this design the auxiliary warps are stacked two high and the spaces between them laterally reduced substantially compared to those of Figures 13 and 14. This constuction is currently being tested.
- (3) <u>Bulbous Blade Bumpy (BBB) Fabrics</u>. A bumpy fabric construction to provide even greater thru the thickness reinforcement than provided by the simple auxiliary warps of (1) or (2) above has been designed. This construction both increases the bumpy overlap and provides for a kind of interference fit between laminae (Figure 16). This construction has not yet been woven. A patent has been applied for covering these bumpy constructions.
- (4) <u>Triaxial Weaves</u>. Triaxial weaves combine potential for multidirectional reinforcement within a single ply, and, in some configurations such as the Substrate Weave, potentials for high volume fraction reinforcement. The substrate weave with auxiliary warps as shown in Figure 17 has been woven by Richard Dow on NASA Contract NAS1-17877. A corresponding fabric with BBB has been designed (Figure 18).
- (5) <u>Stitchbase Weaves</u>. The "locked intersection" characteristic of many triaxial weaves provides a dimensional stability to the construction adequate to insure that stacked configurations can be precisely matched. Thus weaves with regular holes could be stitched through the holes for thru the thickness reinforcement without damage to the yarns in the fabric. Example Stitchbase Weaves are shown in Figure 19.
- (6) <u>Fine Weave</u>. A related study (ref. 6) has shown a substantial "size effect" for fine weaves as reinforcements. The use of such

construction is proposed for special applications such as at bolted or riveted joints. The new developments in triaxial weaving that led to the capability to weave the Substrate Weave make fine triaxial weaves a possibility for such applications.

i

# DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION OF WOVEN-FABRIC-REINFORCED COMPOSITE STIFFNESS PROPERTIES

The mechanics of woven-fabric-reinforced composites are not as well understood as those for tape-reinforced laminates. The behavior of wovenfabric-reinforced composites is related to the additional geometric parameters introduced by the complexity of the weave construction and modifications caused by the composite fabrication process. A methodology was therefore developed, based on extensive photomicrographs of various woven reinforcements provided by NASA Langley, to establish a realistic base for the development of the detailed analytical three-dimensional treatment required to account properly for this complexity. The development of this analysis for both biaxial and triaxial weaves is described herewith.

#### BIAXIAL WEAVES

Various analytical models exist in the literature for the prediction of woven-fabric reinforced composite elastic properties, references 17 and 18. Three different models --- "the mosaic model", "the fiber undulation model" and "the bridging model" have been used by Chou and Ishikawa for predicting fabric thermoelastic properties. Each of these approaches is based on a one or two dimensional representation of the woven fabrics.

During the course of the present program, a number of different mathematical models have been formulated. A detailed account of the approach, the modeling assumptions and results for standard biaxial fabrics is given in Appendix A. Comparison with experimental data indicated that the "NDPROP" model was the most suitable for the desired purpose.

#### "NDPROP" MODEL

An important aspect of the development of this model was the formulation of a rational geometric configuration to represent the various fabrics under consideration. The geometric models were based on photomicrographs similar to the ones shown in Figure 20. As seen in the photomicrographs,

the yarns assume several cross-sectional shapes and flatten out to fill space almost completely. Very small amounts of matrix interstitial pockets can be seen with the result that high fiber volume fraction reinforcements can occur. The "NDPROP" geometry developed to correspond to these photomicrographs is shown in cross-section in Figure 21 and the variation in shape of a given yarn bundle along its length is shown for two different weaves in Figure 22. Based upon the geometry of Figure 22, the yarn bundle can be represented as an assemblage of short unidirectional fiber reinforced composites oriented in various directions. This geometric assemblage represents the input to the "NDPROP" code to be used for calculation of elastic stiffnesses.

Properties can be obtained from the code for either an Upper Bound (using assumed displacement fields and minimizing the strain energy) or a Lower Bound (using assumed traction fields and minimizing the complementary energy). For relatively small amounts of yarn waviness and small amounts of interstitial matrix material the Upper Bound yields results that are closer to experimentally determined values. Typical results generated using the Upper Bound are shown for T-300/Epoxy ( $v_f$ =0.6) composites for selected weaves in Table 1. The trends of increasing in-plane and decreasing thru the thickness moduli as the harness number of the weave increases can be observed. The eight harness satin fabric properties are similar to the properties of a cross-plied (0°/90°) laminate, properties of which are also shown in Table 1. Similar trends can also be observed for in-plane and thru the thickness shear moduli. Detailed correlations between predicted and measured fabric properties are presented in the section entitled "Experimental Program".

. . .

#### TRIAXIAL WEAVES

A related approach to that used for biaxial fabrics was used for triaxial fabrics. Here analyses were based on a first approximation assumption of elliptical yarn cross-sections. A cross-sectional view of triaxial weave with such a yarn is shown in Figure 23. The procedure for determining the yarn geometry and volume fraction of reinforcement is also outlined in Figure 23. The approach is first to assume the volume fraction of yarn within the yarn bundle and then solve a transcendental equation to determine

the yarn geometrical parameters. The overall volume fraction of fiber within the fabric is finally computed and checked with the experimentally determined value.

From Figure 23, it can be observed that the yarn consists of a straight section of length l and two curved segments of ellipses subtending angles of  $\gamma$  at their centers of curvature. For input to NDPROP the curved segments are divided into several smaller segments and given sets of direction numbers and volume fractions. Typical results generated using this code are shown for the BiPlain and Substrate Weaves (see Figure 24) in Table 2. The Substrate Weave has less crimp in the warp yarns than the BiPlain Weave. In the results shown in Table 2, the X-direction refers to the direction bisecting the +30 degree and -30 degree directions. The results are calculated for fiber volume fractions of 50%. Properties of a  $\pm 30^{\circ}/90^{\circ}$  laminate have also been listed for comparison purposes.

#### EFFECTS OF THRU THE THICKNESS RUNNING ELEMENTS

The procedure to analyze special weaves having thru the thickness running elements is essentially similar to that outlined above. The basic repeating elements of the weaves are first identified. The yarns are then divided into straight segments, curved segments or segments of any of the standard weaves described earlier. Further sub-division of the curved segments may be done as required. The sets of volume fractions and direction numbers of the various yarn bundle segments used to model the weave are used by "NDPROP" to calculate the elastic properties.

For filaments without curved segments algebraic equations representative of the NDPROP analysis were derived for the strength and stiffnesses properties of 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}/90^{\circ}$  configurations. These equations, are readily programmable for a hand-held calculator. Programs for the Hewlett-Packard 41-C are included with the equations in Appendix C.

# DEVELOPMENT OF ANALYTICAL METHODS FOR THE CALCULATION OF WOVEN-FABRIC REINFORCED COMPOSITE STRENGTHS

Based on comparisons with other approaches and some experimental results, the "NDPROP" Upper Bound was selected as the approach to be followed for determining fabric stiffness properties. Efforts were then devoted to developing a corresponding consistent and realistic model for predicting strengths, based on the assumed geometric configurations for the various fabrics and the "NDPROP" Upper Bound.

Initially, the strength approach was formulated on a yarn bundle level. Three-dimensional stress analyses were conducted on the fabric composite modeled as an assemblage of oriented yarn bundles. Stresses on each yarn bundle in its local coordinate system were calculated and compared to input yarn bundle allowable strengths using the maximum stress failure criterion. One of the main disadvantages of this method lies in the fact that the input bundle allowable strengths have to be modified each time the assumed fiber volume fraction within the bundle is changed. While this is fairly straight-forward for axial strengths, no consistent procedure exists to define bundle transverse and shear strengths as a function of fiber volume fraction.

Accordingly, an "Average Stress Model" was used and the strength approach was formulated on an overall constituent fiber and matrix level. The yarn bundle stresses were broken down into constituent fiber and matrix stresses using the "Average Stress Model". That is, the bundle stresses and strains were equated to the volume averages of the corresponding fiber and matrix stresses and strains. Then, the constitutive stress-strain relations of the fiber, matrix and yarn bundle were used to compute constituent stresses. Thus, the matrix (or fiber) stresses could be determined as a function of the fiber volume fraction, compliance matrices of the fiber, matrix and unidirectional composite and the applied composite bundle stresses. Although the stress states in the fiber and matrix vary from point to point, failure analyses conducted on the basis of average states of stress may be more realistic. The input allowables for the fiber and matrix for tensile, compressive and shear failure modes. The strength approach was

then extended into a sequential failure analysis mode wherein matrix dominated failures are considered not catastrophic. If the first failure is a matrix failure, the matrix properties for the appropriate yarn bundle are reduced and the analysis is continued until fiber failure occurs. Ultimate strength is characterized by fiber axial failure or sudden increase in strain levels due to stiffness reductions as a result of large numbers of transverse and shear failures. The details of the strength approach are relegated to Appendix B.

Typical results from this approach are shown for T-300/Epoxy biaxial and triaxial woven fabrics in Tables 3 and 4, respectively. Trends among the various fabrics styles are similar to those seen for the elastic properties. Discussions regarding the merits of the strength approach will be made in the section entitled "COMPARISONS OF ANALYSIS AND EXPERIMENT" wherein the results of data correlations between predicted and measured fabric strengths will be presented.

#### COMPARISONS OF ANALYSIS AND EXPERIMENT

An experimental program was conducted at NASA, Langley with the following objectives:

- To verify the analytical predictions of standard woven fabric properties and strengths and to explore differences in toughness characteristics among the various fabric reinforced composites and compare them to those of equivalent tape laminates;
- 2. To serve as a guide for modifying the analytical models and methodology based upon the data correlations in 1;
- To determine the properties and strengths of the advanced weaves developed in this program and compare them to those predicted analytically;
- 4. To determine possible enhancements in toughness characteristics among the newly developed advanced weaves in comparison with both tape laminates and standard weaves; and
- 5. To guide the development of advanced weaves based on the shortcomings or advantages experienced in 3 and 4.

The results presented in this section are arranged in two parts: those for standard biaxial and triaxial weaves and those for the newly developed advanced weaves.

#### Standard Weaves

Tests were conducted at NASA, Langley using T-300/934 graphite/epoxy material and the following fabric styles: Plain weave, Oxford weave, 5 Harness Satin weave, 8 Harness Satin weave and BiPlain Triaxial weave. Some Kevlar/934 triaxial weave samples were also available for testing.

### **Biaxial Weave Elastic Properties and Strengths**

Calculations were made using the "NDPROP" code in order to perform data correlations with experimental results. The weave parameters used to model the geometry are shown in Table 5. Assuming that the overall fiber volume fraction within the bundle,  $v_f$ , is known from experimental measurements, the fiber volume fraction within the bundle,  $v_{fp}$ , and the packing fraction of yarns,  $v_{fp}$ , have to be adjusted to satisfy the relation:

The experimentally observed in-plane elastic properties are shown in Table 6 along with "NDPROP" calculated values.

The measured data were obtained from the experimental program conducted at NASA, Langley. Both tabbed and untabbed specimens were used for the tension test. Gage section failures were consistently observed only for the untabbed specimens. Hence the reported tensile strengths are the averages of the untabbed specimen data. The tensile moduli have been calculated using both the untabbed and tabbed specimen data. The compression test data reported were obtained from the "Short Block Compression Test" method. The  $\pm 45^{\circ}$  Tension test was used to determine the fabric in-plane shear properties. The calculated tensile moduli are about an average of 12% higher than measured values for the Oxford, 5 and 8 harness satin weaves. However, a large discrepancy (30%) exists in the case of the plain weave. This may have been caused by either or both of the following factors:

- 1. The plain weave sample may be of poor quality. C-scans of the material indicated damaged areas and the photomicrographs indicated areas with voids and resin rich areas.
- 2. The higher crimp in the plain weave may cause the measured values to be lower than predicted by the Upper Bound. Although the analytical model accounts for the crimp in the woven fabrics, the Upper Bound assumption tends to minimize the effects of high cross-over angles. The Upper Bound predictions thus represent properties attainable from good quality woven fabrics (fewer voids and damaged areas) having small amounts of yarn waviness.

For the plain weave, the tensile and compressive moduli are not significantly different. For the other weave styles, the compressive moduli are lower by an average of approximately 13%. The analysis does not distinguish between tensile and compressive moduli. A possible reason for the lower measured compressive moduli lies in the inherent complexity of compression testing of composites. This complexity arises because the test fixture and specimen must be designed so that buckling must not occur (unsupported length must be small) and the gage section stress state must be uniform and uniaxial (gage section must be sufficiently far from the supports).

The in-plane shear moduli are in good agreement for the five and eight harness satin weaves. For the Oxford weave, a balanced  $\pm 45^{\circ}$  lay-up was not used, hence the data are not reported.

Comparisons between calculated and measured in-plane tensile, compressive and shear strengths of the same biaxial fabrics are shown in Table 7. Both the initial and ultimate failure stresses are reported in the table. It can be observed that the predicted tensile first failure occurs at a stress of approximately 70 ksi for all four fabric styles. For the 5HS and 8HS fabrics, the measured strengths are in good agreement with the predicted final failure stress (~110 ksi). However, for the plain weave and Oxford weave, the measured strengths are closer to the first failure stresses. A possible explanation is that the higher amounts of crimp in these two fabric styles cause matrix dominated failures to be more severe by not allowing the loads to get effectively redistributed among the fibers.

In the case of predicted shear strengths, the first failures are matrix dominated failures. Since the shear loads have to be primarily carried by the matrix in orthogonal biaxial fabrics, subsequent failures are also matrix failures and occur at stresses even lower than the first failure stress. Therefore the first failure stress represents the ultimate strength also since the fabric can no longer carry shear loads after the first matrix failure has occurred. The measured and predicted shear strengths are in good agreement, as can be observed from Table 7.

In the case of predicted compressive strengths, the first failure in each case is a fiber failure. Thus the initial and ultimate compressive strengths are the same for each of the four fabric styles. The results are in good agreement for the 5HS and 8HS weaves. The predicted values are much higher than the measured values for the plain weave and Oxford weave (warp The reason for the large discrepancy can be explained in the direction). following manner. For conventional tape laminates numerous studies have been carried out, aimed at deriving analytical expressions for the axial compressive strengths of unidirectional fiber bundles. These strengths are then used in laminate failure analyses. The axial compressive strength can be analytically shown to be equal to the unidirectional composite axial shear modulus. Measured strengths have consistently been much lower. It is postulated here that the discrepancy may be explained by a decrease in the matrix shear modulus because its proportional limit has been exceeded. For an absolutely straight fiber bundle under compression, the axial stress in the matrix is low due to the large ratio of fiber to matrix axial Young's modulus. Also, the shear stress in the matrix is zero.

Because of imperfections associated with fabrication, small amounts of waviness exist in the fibers (for conventional tape laminates). When these fibers are under compression, the states of stress in the matrix are a combination of normal and shear stresses. The shear stresses become significant even at small angles of waviness and cause the matrix to yield resulting in low compressive strengths. Accordingly, the allowables that are used for conventional laminate strength analyses reflect this knockdown.

Additional knockdowns in strength can occur if the crimp in the fabrics is high. This is because the matrix shear stresses are a strong function of the off-axis angle and may become more significant than the normal stresses in terms of causing the matrix to yield even at off-axis angles as low as

5°. Therefore, the compressive strength allowables that go in as input to the stress analysis have to be calculated as a function of the off-axis angle. More work is required in this area so that the postulate can be formalized and incorporated into the computer code.

Iosipescu shear tests were done on the fabrics at the University of Wyoming. Results are presented in reference 19. Both in-plane and transverse shear moduli and strengths are presented in Table 8 along with the predicted values. The predicted shear moduli in all cases are higher than the measured values by about 20-30%. The calculated in-plane shear strengths, however, under predict the measured values by about 20%. The predicted transverse shear strengths are in reasonable agreement with data. For in-plane moduli and strengths, the  $\pm 45^{\circ}$  tension tests are generally more reliable than the Iosipeseu shear tests and those results were in better agreement with calculations, as indicated in Tables 6 and 7.

## Triaxial Weave Elastic Properties and Strengths

The parameters used for modeling the T-300/934 and Kevlar/934 triaxial weaves are shown in Table 9. The comparisons between calculated and measured properties and strengths are shown in Table 10. The triaxial woven fabrics had essentially the same crimp as the plain weave biaxial fabrics discussed above and in addition had more resin rich areas (low values of  $v_f$ ). The following conclusions may be made from the data:

- Measured tensile and compressive moduli are almost identical. This is in agreement with the analytical model assumptions of equal tensile and compressive moduli.
- 2. Both moduli and strengths in the fill direction are higher than corresponding warp direction values by about 10-15%.
- 3. Measured compressive strengths are significantly higher than the tensile strengths (about 16-20%).

The comparisons between predicted and measured values indicate that the agreement is not as good as for biaxial weaves. The analysis predicts higher ultimate tensile and compressive strengths in the warp direction as compared to the fill direction, but measured data indicate otherwise. A possible explanation for the discrepancy in the tensile strength stems from the fact that the y-direction load is directly along the fiber; therefore, failure in this direction only occurs when axial fiber breakage occurs. In the warp direction, matrix failures may have caused material degradation leading to premature failures. The analytical model for triaxial weaves thus needs some modification and improvement.

#### Biaxial Weave Toughness Properties

In order to evaluate toughness properties of fabric composites, NASA Standard Toughness tests (reference 20) were done on the various types of fabrics. The results of the compression after impact tests are shown in Table 11. Results for the equivalent tape lay-up are also presented in the table. The results of the other toughness tests (Double Cantilever Beam, Open Hole Tension and Open Hole Compression) are shown in Table 12. Results for the corresponding tape lay-ups were obtained from reference 22 and are also presented in the same table.

The toughness tests generally indicated that fabrics possess better toughness characteristics as compared to conventional tape laminates as evidenced by higher strengths and ultimate strains for the "Compression after Impact" test and higher values of interlaminar fracture toughness  $(G_{IC})$  as measured by the "Double Cantilever Beam" test. It was originally thought that open hole tension and compression strengths for fabrics may be higher than those for equivalent tape laminates because of the increased delamination resistance that the fabrics are likely to provide. It is possible that the increased resistance was not observed because the weave patterns were fairly coarse (small amounts of intersections of warp and fill yarns per square inch). Inhibition of the initial failures through the use of finer weaves was demonstrated in another research program, reference 6.

#### Advanced Weaves

As described in the section "Development of Advanced Weaves", some "Building Block" configurations were defined during the course of this program. The first configuration from this category is termed the "Auxiliary Warp Reinforcement Weave" and consists of two nested configurations --- "Nested face-ply" and "Nested Internal-ply" (see Figure 14).

Elastic property and strength calculations were made in order to assess the potential of these woven configurations.

#### Auxiliary Warp Reinforcement Weaves

Calculations were made based on the following specifications:

- 1. 3000 filaments/yarn;
- 2. Yarn count of 18 for the basic plain weave, and

· · .

3. T-300/Epoxy material.

The first task was the identification of the repeating volume element with realistic dimensions based on the photomicrographs and measured volume fractions. It was assumed that the area fraction of the fiber within the yarn was 70%.

The nested face-ply configuration contains within its repeating element, 8 yarns each in X and Y directions constituting the 18x18 plain weave, 6 circular section yarns (assumed straight) traveling in the X direction and 6 non-circular auxiliary yarns in the Y-direction holding the other yarns in place. The lengths and direction numbers of the plain weave were obtained based on the yarn count, cross-over angle and yarn cross-sectional area. Similar calculations were done for the auxiliary yarns, and curved segments were approximated by short straight segments to determine volume fractions and yarn orientations. The resulting set of direction numbers and volume fractions were fed into "NDPROP" in order to get an Upper Bound prediction on elastic properties and strengths.

A similar procedure was used to calculate properties of the nested internal-ply configuration. The repeating element in this case contains the same 8 yarns of the basic plain weave in the X and Y directions but contains 12 circular straight yarns in the X-direction and 12 auxiliary yarns in the Y-direction.

The materials that were tested were the nested face-ply, the 4-ply building block and the 12-ply building-block configurations. The 4-ply fabric consists of 1 nested face-ply and 1 nested internal-ply. The 12-ply fabric material consists of 1 nested face-ply and 5 nested internal-plies. The properties of these building-block configurations were generated from

the basic face-ply and internal-ply properties. The results of these calculations are shown in Table 13. The comparison between predicted and measured values from tests conducted on these materials are shown in Table 14. In general, the measured tensile moduli and strengths and the measured compressive moduli are 20-30% lower than the calculated values. The major discrepancy is in the compressive strength values.

Because of these low values a new design of auxiliary warp weaves was developed based on the following considerations: (1) elimination of the resin-rich pockets as far as possible and (2) use of yarns with longer float lengths, minimizing crimp while retaining the basic features of the original building-block configuration. The following section contains the details of the Revised Design Auxiliary Warp reinforcement weaves.

#### Revised Design Auxiliary Warp Reinforcement Weaves

The building-block for the advanced weave also consists of the faceply and internal-ply configurations. The modified face-ply design is shown in Figure 26. It can be observed that the basic weave corresponds to a four harness satin in the fill direction and a five harness satin in the warp direction. As before, a thread count of 18 per inch and 3000 filaments/yarn were assumed for the calculations.

The dimensions of the repeating element are 4Lx10L as can be seen from Figure 26. Different cross-sectional views of the face-ply and internal-ply configurations at various sections are shown in Figures 27 and 28, respectively. The repeating element contains two each of the yarns shown in sections B-B, C-C, D-D, and E-E, and one each of the yarns shown in sections A-A and F-F, see Figures 27 and 28. The nested face-ply and nested internal-ply configurations are shown in Figure 29. Property calculations were made by assuming a volume fraction of fiber within the yarn of 70%. The "NDPROP" Upper Bound results for the Revised Design Auxiliary Warp nested face-ply and nested internal-ply are shown in Table 11. Also listed are the properties for a 4-ply nested lay-up consisting of two face-plies and two internal-plies, shown in Figure 29. Test data on the revised weave design are awaited.
# EVALUATION OF POTENTIALS FOR PERFORMANCE OF WOVEN FABRIC REINFORCEMENTS

Evaluation of the potentials for performance of woven-fabric reinforced composites is complicated by the fact that both strength and stiffness in various directions (including the thru the thickness direction) are variables dependent on the weave design. In general, therefore, as the following results will emphasize, trade-offs are needed among the pertinent variable properties to define most appropriate weave configurations. Likewise, the methodology of evaluation must be extended to include additional pertinent design parameters such as thru the thickness reinforcement, as will be shown.

# APPROACH

The approach used to evaluate the potentials of woven reinforcement constructions was to utilize the NDPROP computer code to calculate properties for typical composites, with parametric variations of reinforcement configurations, and relate the results to the familiar standard, -7075-T6 aluminum alloy. This baseline material has much to recommend it beside familiarity. For one thing, it is hard to beat, particularly, as will be seen, for three-dimensional properties. Thus composites offering potentials superior to the aluminum can be considered of interest. The fact that wovens of T-300 can indeed out-perform aluminum for many applications will be repeatedly demonstrated in the following evaluations.

Throughout these calculations the assumption is made that the woven (or braided) constructions are comparable to multi-harness weaves, having minimal crimp and accompanying maximum properties. (Similar assumptions have been employed successfully for 3-D carbon-carbon composites, for example, reference 21). Thus the potentials for performance are represented.

#### EVALUATION PROCEDURES

A wide range of reinforcement configurations, both 2-D and 3-D, was evaluated, as follows:

- 2-D (1) 0°/90°, of varying proportions
  - (2) ±φ°
  - (3)  $\pm \phi^{\circ}/90^{\circ}$
  - (4)  $0^{\circ}/\pm\phi^{\circ}$
- 3-D (1) The 2-D constructions with thru the thickness reinforcement.
  - (2) Omniweave
  - (3) Nested constructions

Primary constituents considered were T-300 and Kevlar 49 filaments in a 5208 resin matrix. Volume fractions were 60% throughout.

In accordance with the results found in the section "COMPARISONS OF ANALYSIS AND EXPERIMENT", with the assumption that woven constructions of minimal crimp are accessible, as they in general appear to be, the upper bound NDPROP analysis was employed for the evaluation of elastic properties. For strength, first failure rather than that for cumulative damage was the criterion, as representative of conservative design practice for repeated loading.

#### EVALUATION PARAMETERS

#### Tension

The important design parameters for tensile applications were determined to be:

- (1) Tensile strength/density ratio  $\frac{\sigma_X}{\rho}$  a direct measure of weight of material required to carry a tensile load.
- (2) Tensile stiffness/density ratio  $\frac{E_x}{\rho}$  a prime measure of weight of material required to limit the extension of a tensile element to some desired value.

(3) Shear stiffness/density ratio  $\frac{G_{XY}}{\rho}$  - a measure of weight of material required to limit distortion of an element subject to shear.

Of these parameters (1) and (3) are generally most important. For tensile applications, the tensile load to be carried is the essence of the design. For many applications, - aircraft wings, helicopter rotor blades, propellers, etc., shear stiffness, relating to flutter and divergence, is also of major importance. Axial stiffness, relating to overall bending of the wing for example, may also be a design consideration, particularly for composites, because in general as the configuration is changed to increase shear stiffness the axial stiffness decreases, as the following plots will show.

#### <u>Compression</u>

The parameters for compression are similar to those for tension, but require an additional one to account for the possibility of compressive buckling, as follows:

- (1) Compressive strength/density ratio  $\frac{-\sigma_x}{\rho}$  a direct measure of weight of material required to carry a compressive load.
- (2) Compressive stiffness/density ratio  $\frac{E_x}{\rho}$  in general equal to  $\frac{E_x}{\rho}$  for tension.
- (3) Shear stiffness/density ratio  $\frac{G_{xy}}{\rho}$  in general equal to  $\frac{G_{xy}}{\rho}$  for tension.

#### Additionally,

(4) Compressive buckling Indicator Number  $I_p^*$  - a value combining the material strength and stiffness properties to measure weight required to carry the applied load. Different formulations are required (see ref. 12) depending on whether a plate  $(I_p^*)$  or shell  $(I_S^*)$  construction is involved. Herein only  $I_p^*$  will be used; results for  $I_S^*$  while numerically different would lead to identical conclusions. The formulation for  $I_p^*$  is

$$I_{p}^{*} = \frac{E_{p}^{1/6} \sigma_{cu}^{1/2}}{\rho}, \quad \left(\frac{\ln 5}{\ln b}\right)^{1/3}$$

where:

$$E_{p}$$
, plate buckling modulus,  $=\frac{1}{2} \frac{\sqrt{E_{x}E_{y}}}{1 - \sqrt{\nu_{xy}\nu_{yx}}} + G_{xy}$ 

with  $E_x$ ,  $E_y$  longitudinal and transverse extensional moduli, psi  $\nu_{xy}$ ,  $\nu_{yx}$ , in-plane Poisson's ratios  $G_{xy}$ , in-plane shear stiffness, psi  $\sigma_{cu}$ , compressive strength, psi  $\rho$ , density of material, pci

**EVALUATIONS** 

#### Tension

Evaluations for tensile applications are presented in the format used in Figure 2 for the various materials and constructions considered. In

every case the ultimate tensile strength/density ratio  $\frac{\sigma_X}{\rho}$  is plotted against  $\frac{G_{XY}}{\rho}$ , the shear stiffness/density ratio and  $\frac{E_X}{\rho}$  the axial stiffness/density ratio. Curves for shear stiffness are solid; for the axial stiffness dashed. Tick marks on the curves identify specific proportions, as indicated.

#### Biaxial 0°/90° Configurations

Evaluations begin (Figure 30 & 31 ) for a simple, biaxial configuration, representative of 5 harness or 8 harness satin weave, with various proportions of reinforcement in the warp and fill directions (see the vertical curve to the left on each of the figures). Such variations in proportions might be produced, for example, simply by changing the weft yarn count while holding the warp yarn count constant. The figures show that the simple 0°/90° configuration has a minimal shear stiffness/density ratio (25% of that of aluminum, 15% for Kevlar) for all proportions, but enormous (up to 750%) improvement in strength/density ratio.

#### Biaxial Configurations.

For many, perhaps most, applications, shear stiffnesses greater than those attained by the biaxial 0°/90° reinforcement are required. Braided biaxial constructions making angles  $\pm \phi^{\circ}$  to the axial x-direction can provide such increases, as shown on Figures 30 and 31. For the T-300 braid at the same strength/density as aluminum the shear stiffness/density ratio is approximately 225% that of aluminum. For Kevlar the ratio is 130%. Strengthwise, for the same shear stiffness/density as aluminum the gains are even greater, being approximately 330% for T-300 and 80% for Kevlar.

#### Triaxial Configurations.

Shear stiffnesses greater than for the 0°/90° configuration are also obtainable with triaxial weaves in either 0°/± $\phi$ ° or ± $\phi$ °/90° configuration. Rather surprisingly, the ± $\phi$ °/90° arrangement is generally superior to the 0°/± $\phi$ ° configuration but there are exceptions for the latter, as the following comparisons bring out.

Numerical comparisons taken from figures 32-35 with nominal aluminumalloy properties, are indicated in the table below

| Property                                 | Aluminum Al | Ιογ                                     | T-300 a | and (Kevlar-4                                        | 9)                       |                                           |                               |
|------------------------------------------|-------------|-----------------------------------------|---------|------------------------------------------------------|--------------------------|-------------------------------------------|-------------------------------|
|                                          |             | ± <b># •</b>                            |         | <b>:∳•/90</b> •                                      |                          | 0•/±♦•                                    |                               |
| $\frac{G}{\rho}$ , in.                   | 40,000,000  | 40,000,000                              |         | 40,000,000                                           |                          | 40,000,000                                |                               |
| $\frac{\sigma_{\mathbf{X}}}{\rho}$ , in. | 700,000     | 3,200,200 <sup>(3)</sup><br>(1,300,000) | ê ¢=20+ | 3,800,000 <sup>(3)</sup><br>(570,000) <sup>(2)</sup> | <b>è ∳=</b> 20•          | 3,300,000 <sup>(3)</sup><br>(1,700,000)   | ê ∳≈20•                       |
| $\frac{\sigma_{x}}{\rho}$ , in.          | 700,000     | 700,000                                 |         | 700,000                                              |                          | 700,000                                   |                               |
| $\frac{G_{XY}}{\rho}$ , in.              | 40,000,000  | 87,000,000<br>(39,000,000)              | €       | 80,000,00<br>(38,000,00                              | 00 € ∲=40+<br>0) € ∳=30+ | <b>82</b> , 000 , 000<br>( 52 , 000 , 000 | D @ #*45•<br>) <b>@</b> #*40• |

- The superiority of the braid for high shear stiffness (±45° is a maximum).
- (2) Deficiency regions in the Kevlar construction due to the compressive weakness of Kevlar. In this case, Poisson contractions induce compressive failures in the 90° filaments.
- (3) Minor but not substantial superiority of the  $\pm \phi^{\circ}/90^{\circ}$  configuration.

Both the  $\pm \phi^{\circ}/90^{\circ}$  and the  $0^{\circ}/\pm \phi^{\circ}$  configurations can be made with various proportions as shown in figures 32 to 35. For the  $\pm \phi^{\circ}/90^{\circ}$  configuration, highest values of  $\frac{\sigma_{\rm X}}{\rho}$  are achieved with most material in the  $\pm \phi^{\circ}$  direction and also highest values of  $\frac{G_{\rm XY}}{\rho}$  are achieved with the highest fractions of material in the  $\pm \phi^{\circ}$  direction (Figs. 32 & 33). The reverse is true for  $\frac{\sigma_{\rm X}}{\rho}$  for the  $0^{\circ}/\pm \phi^{\circ}$  cases (Figs. 34 & 35), hence specific comparisons such as those in the table above may be misleading unless truly optimized proportions of each approach for the application have been evaluated. The use of envelope curves such as those of figure 36 provides such optimization. From these envelopes it is evident that the  $\pm \phi^{\circ}/90^{\circ}$  configuration is indeed superior to the  $0^{\circ}/\pm \phi^{\circ}$  configuration except for the restricted area encountered in comparisons with aluminum for which  $\phi$  approaches 45° and in which the curves come together.

# Effect of Use of First Failure Criterion in Evaluations

As previously noted, the failure criterion used throughout these evaluations was that of first failure. In order to determine whether the use of this criterion unduly penalized the composite constructions, as for example in relation to their performance compared to aluminum, a few exploratory calculations were made using the cumulative damage failure criterion. Typical results are shown in Figure 37 for a  $\pm \phi^{\circ}/90^{\circ}$ construction. As would be expected, the final failure criterion is shown to raise the value of  $\frac{\sigma_{\rm X}}{\rho}$  for given values of  $\frac{G_{\rm XY}}{\rho}$  and  $\frac{E_{\rm X}}{\rho}$ . Differences are not substantial - on the order of 10%. The conservative use of the first failure criterion for these evaluations appears to be appropriate.

# <u>Implications of Analytical Methodology Used (NDPROP, Equations of Appendix</u> <u>C) on Effects of Thru the Thickness Reinforcement</u>

The addition of thru the thickness (TTT) reinforcement to planar reinforcement configurations is shown to be twofold: (1) it detracts from the volume fraction available for in-plane reinforcement, and (2) it introduces the possibility of new failure modes associated with the transverse (TTT) direction. The first of these effects is straightforward. One percent taken away from unidirectional (axial, 0°) stiffening and used TTT reduces the 0° stiffness slightly less than 1% (0.875% for T-300/5208 @  $v_f=0.6$ ) but increases the TTT stiffness by much more than 1% (12.5% for the same construction). Surprisingly, the in-plane transverse (90°) stiffness is also increased (by 1.72% due to Poisson's ratio effects). (These changes are not in contradiction to the theorem that the sum of the stiffness \$ in the stiffness matrix for the material is invariant; 1% of the original axial stiffness is a quantity which is the same order of magnitude as 12.5% of the original transverse stiffness.) The effect on strength, however, can be substantial; instead of the 330,000 psi tensile strength of the unidirectional composite, the TTT configuration fails in a transverse mode at 220,000 psi. (Starting with a balanced 0°/90° T-300/5208,  $v_f = 0.6$  configuration, removing 1% of the in-plane reinforcement, and adding it TTT, decreases both the 0° and 90° in-plane stiffnesses 0.66% and increases the TTT stiffness 11%).

Various combinations of woven reinforcements were investigated to evaluate the effects of thru the thickness reinforcement. Typical results are shown in Figures 38-41.

For both T-300 and Kevlar constructions the effects of adding thru the thickness reinforcements on resulting composite properties (both stiffness and strength) are shown to be orderly and not disproportionate to the percentage TTT addition as long as new failure modes are not encountered. New failure modes were encountered for the  $0^{\circ}/\pm\phi^{\circ}$  configurations in both T-300 and Kevlar for proportions having mostly 0° reinforcements. Accordingly calculations for strength of these configurations yielded substantially lower stresses than for the same configurations without TTT (see par-

ticularly figures 40 and 41 for low values of  $\frac{G_{xy}}{\rho}$  and  $\frac{v_f}{v_f}$ ).

If new failure modes are not introduced by TTT reinforcements the relationships between losses in tensile strengths and increases in thru the thickness reinforcement can be summarized on a simple plot of  $\Delta \sigma_{x_{max}}$  vs.  $v_{f_{z}}$  (figure 42).

The figure shows that if the losses in tensile strength are to be kept under ten percent, even for simple, constant failure modes, the volume fraction of TTT reinforcement must also be kept below 10% of the total reinforcement.

#### <u>Compression</u>

Evaluations for compressive applications are presented in a similar format to that used for tension, i.e. plots of  $\frac{-\sigma_x}{\rho}$  vs. the parameters  $\frac{G_{xy}}{\rho}$  and  $\frac{E_x}{\rho}$  with the curves for  $\frac{-\sigma_x}{\rho}$  vs.  $\frac{E_x}{\rho}$  as dashed lines indicative of the lesser role of  $E_x$  in most cases to that played by the shear stiffness  $G_{xy}$ . To evaluate buckling resistance, curves are also plotted of  $I_p^*$ , as discussed in the section on "EVALUATION PARAMETERS".

# <u>Biaxial 0°/90° and $\pm \phi$ ° Configurations.</u>

For the simple biaxial configurations in compression the evaluations (figures 43 and 44) depict similar characteristics to those found in tension. The 0°/90° configuration is characterized by low shear stiffnesses; the  $\pm\phi$  configurations have reasonable combinations of compressive strength/density and shear stiffness/density - better than the aluminum alloy for T-300/Epoxy. The Kevlar suffers from its low compressive strength, and is not competitive in any of these simple configurations.

-

Evaluations with account taken of buckling characteristics utilizing  $I_p^{*}$ as the measurement parameter in place of  $\frac{\sigma_x}{\rho}$  (figure 45) show that the  $\pm \phi^{\circ}$  configuration can potentially be made in a plate structure to carry the same compressive loading, at the same shear stiffness, as aluminum alloy for 3/8 the weight.

Kevlar was not evaluated for use in plates in compression because its low compressive strength does not make it attractive for such application.

#### Triaxial Configurations.

As noted for tension, the use of triaxial weaves, either  $0^{\circ}/\pm \phi^{\circ}$  or  $\pm \phi^{\circ}/90^{\circ}$ , can provide both high compressive strength/density ratios and high shear stiffness/density ratios, as the specific values (taken from figures 46 and 47) in the table below reveal.

Property Aluminum alloy 
$$\frac{1}{2} \frac{1}{p} \frac{1}$$

As previously found for tension, the table shows (1) superiority (though less than in tension) of the braid for high shear stiffnesses, and (2) minor but not substantial superiority of the  $\pm \phi^{\circ}/90^{\circ}$  configuration over the  $0^{\circ}/\pm \phi^{\circ}$  configuration.

Here again, however, as in tension, specific comparisons may be misleading. The best basis for evaluation appears to be by comparisons of the best against the best, using the most rigorous comparative parameters.

Accordingly, envelope curves of  $I_p^*$  vs.  $\frac{G_{XY}}{\rho}$  and  $\frac{E_X}{\rho}$  were drawn for the various configurations and used as the basis for overall evaluations, as shown in Figure 48. The results of these overall evaluations are summarized below.

- (1) The triaxial  $\pm \phi^{\circ}/90^{\circ}$  weave provides superior performance in compression as measured by higher values of the Indicator Numbers  $I_{p}^{*}$ , for the range of shear stiffnesses achieved for  $0^{\circ}<\phi^{\circ}<45^{\circ}$ , as compared to (a)  $0^{\circ}/90^{\circ}$  biaxial weaves, (b)  $\pm \phi^{\circ}$  biaxial braids, (c)  $0^{\circ}/\pm\phi^{\circ}$ .
- (2) The superiority of the  $\pm \phi^{\circ}/90^{\circ}$  weave is greatest at shear stiffnesses corresponding to those achieved by the weave at intermediate angles of  $\phi$ , as in the range  $20^{\circ} < \phi^{\circ} < 30^{\circ}$ . The superiority diminishes to zero as  $\phi$  approaches  $0^{\circ}$  or  $45^{\circ}$ .
- (3) The plot of figure 48 forms a basis for comparison of performance among various other materials and configurations. (Such comparisons are made and reported in the section "POTENTIALS FOR PERFORMANCE".)

#### HYBRIDS

Woven hybrid reinforcements are perhaps unduly intriguing because they are easy to make. In both biaxial and triaxial construction the use of different materials in warp and fill imposes no difficulty, indeed in some cases may make the weaving easier.

From a performance standpoint the prime motivation for hybrid constructions relates to the thru the thickness reinforcement problem. The use of fibers of higher "toughness" such as nylon or Kevlar appears appropriate for investigation even though as yet the relative roles of thru the thickness strength, stiffness, and toughness have not been adequately characterized. Further, the addition of any thru the thickness running element must be evaluated in terms of its possible influence on in-plane performance.

In-plane hybrids also deserve consideration. The basis for hope that some hybrid combination might prove more effective than either constituent follows some such pattern as the following: (1) the transverse stiffnesses of material (b) are much less than those of material (a) therefore, the use of (b) transversely will not as readily lead to premature cracking in tension as the use of (a) transversely, - so a combination of (b) with (a)

should be better than (a) alone. While there may be merit to this argument, detailed analysis reveals that the benefits are limited, as will be shown.

Analyses were made of various hybrid combinations, following the same approach used for the performance evaluation of individual materials. In all cases the materials studied were T-300 and Kevlar-49. On all figures, tick marks on the curves denote angles of 15°, 30°, and 45°, as in Figure 2.

#### EVALUATIONS OF HYBRIDS

#### <u>Tension</u>

# Biaxial 0°/90° Weaves

Evaluations begin (fig. 49) for a simple biaxial weave with T-300 in the warp (0°) direction and varying proportions of Kevlar-49 in the fill. (The reverse hybrid having Kevlar in the 0° direction was not considered because of the adversely high transverse stiffness of T-300. The damaging effect of this characteristic will be considered in the section "Thru the Thickness Reinforcements" to follow.) Figure 49 shows clearly the desired improvement in tensile properties for the hybrid over those for either T-300 or Kevlar alone. For both materials by themselves the smallest fraction of transverse fiber induces premature cracking whereas the Kevlar transverse fiber accommodates the low strain of the 0° T-300 environment.

With this encouraging result, the next question to be considered is "Can this same improvement be found in triaxial weaves providing increased shear stiffnesses compared to those for the biaxial constructions?"

# Triaxial $\pm \phi^{\circ}/90^{\circ}$ and $0^{\circ}/\pm \phi^{\circ}$ Weaves

Answers to the above question are explored in Figure 50 to 55. The overall answer is a negative one, for various reasons, such as:

(1) Putting a 90° Kevlar into a  $\pm \phi^{\circ}/90^{\circ}$  configuration ( $\pm \phi^{\circ}$  being T-300) introduces a new failure mode, - compression in the Kevlar due to Poisson contraction, - with substantial strength reductions (Figure 50).

- (2) Putting a 90° T-300 into a  $\pm \phi^{\circ}/90^{\circ}$  configuration ( $\pm \phi^{\circ}$  being Kevlar) aggravates the transverse failure mode caused by the 90° element (Fig. 51).
- (3) Putting a 0° Kevlar into a 0°/± $\phi$ ° configuration (± $\phi$ ° being T-300) does not do much harm, but it does not do any good either (Fig. 52).
- (4) Putting a 0° T-300 into a 0°/ $\pm \phi$ ° configuration ( $\pm \phi$ °being Kevlar) does do much good, but not as much as putting T-300 all around (Fig. 53, and c.f. Fig. 34).
- (5) Comparisons of the best the envelope curves for hybrids and nonhybrids of both triaxial weaves show that the  $\pm \phi^{\circ}/90^{\circ}$  T-300 is the best followed closely by the  $0^{\circ}/\pm \phi^{\circ}$  T-300 (Rigs. 54 and 55). The  $\pm \phi^{\circ}/90^{\circ}$  Kevlar is the poorest, again due to the compressive failures induced in the 90° elements. The hybrids fall in all cases between the Kevlar and the T-300.

. . . . . . .

ł

į

ſ

#### Thru the Thickness Reinforcements

Typical results of evaluations of the effects of using Kevlar reinforcements thru the thickness are shown by comparisons of Figures 56 and 57. Figure 56 shows losses in performance due to additions of T-300 thru the thickness reinforcement to a triaxial  $0^{\circ}/\pm\phi^{\circ}$  configuration. Figure 57 shows lesser losses for the use of Kevlar TTT. Figure 58 and 59 indicate similar results when the base configuration is  $\pm\phi^{\circ}/90^{\circ}$ . Kevlar appears especially attractive as a TTT reinforcement material.

# <u>Compression</u>

In compression, the evaluation results show that, as in tension, Kevlar has a role to play as a thru the thickness reinforcement but not as a booster of in-plane performance. Because of the similarity of these results to those for tension they will be summarized only briefly here before going on to treat the more complex problem not encountered in tension, of combined strength and buckling resistance.

#### Biaxial 0°/90° Weaves

Hybrid combinations of T-300 filaments in the warp  $(0^{\circ})$  direction and Kevlar in the fill  $(90^{\circ})$  direction are represented in Figure 60. No merit is evident for the hybrids compared to 100% T-300.

#### Triaxial $\pm \phi^{\circ}/90^{\circ}$ and $0^{\circ}/\pm \phi^{\circ}$ Weaves

For the 0°/± $\phi$ ° configuration the Kevlar is least damaging if used in the ± $\phi$ ° direction filaments (Figs. 61 and 62). For the ± $\phi$ °/90° configuration (Figs. 63 and 64), Kevlar in the 90° direction is nearly as effective as T-300, but used in the ± $\phi$ ° directions it destroys the usefulness of the configuration. Because of the potential increased toughness of Kevlar, a ± $\phi$ °(T-300)/90° (Kevlar) hybrid may be of interest. The penalty to be paid  $\frac{-\sigma_{\chi}}{\rho}$  values is 10% to 15% as shown by the envelope curves of Figure 65. Losses if used in the 0°/± $\phi$ ° configuration (Fig. 66) are substantially higher.

#### Thru the Thickness Reinforcement

The most appropriate use for Kevlar as a hybrid with fibers like T-300 appears to be in the thru the thickness direction. Here the losses for the addition of small volume fractions of thru the thickness Kevlar are minimal (Figures 67 and 68) and less than those for all T-300 constructions (compare Figs. 8 and 67, for example).

#### Evaluations on the Basis of Indicator Numbers

If shear stiffnesses greater than one fourth those of aluminum are required so that a simple biaxial configuration is inadequate (Fig. 69), the only hybrids competitive with 100% T-300 are the  $\pm \phi^{\circ}/90^{\circ}$  configuration with Kevlar in the 90° direction (Fig. 70). Even here the best has the least Kevlar. The 0°/ $\pm \phi^{\circ}$  at proportions giving shear stiffness/density ratios about equal to aluminum are indeed much lighter than aluminum (Fig. 71), but lesser than the  $\pm \phi^{\circ}/90^{\circ}$  configurations. As is to be expected, the mostly Kevlar hybrids (Figs. 72 and 73) are not competitive for these compressive loading with the mostly T-300 hybrids (Figs. 70 and 71).

Thru the thickness, however, Kevlar does a most effective job (Fig. 72). Reductions of only approximately 5% and 10% in  $I_p^*$  values accompany TTT Kevlar reinforcements in planar  $\pm \phi^{\circ}/90^{\circ}$  T-300 weaves for 10% and 20% TTT Kevlar.

#### DEVELOPMENT OF ADVANCED WEAVES

Development of advanced weaves had the following two principal objectives superposed on the ongoing one of providing improved in-plane properties (compression, shear), namely:

- Weaves to facilitate enhancement and control of thru the thickness properties.
- (2) Weaves to facilitate fabrication of composites for high load intensities (thick constructions), particularly weaves providing for tapering thickness to accommodate varying load intensities.
- (3) Fiber architectures that inherently improve damage tolerance.

Three advanced weave concepts have been developed to meet the foregoing objectives. These weaves derive in part from the analyses described in the previous sections, in part from supporting studies and tests at the Langley Research Center, and in part from developments in related studies (refs.8 and 22). These concepts are the auxiliary warp (or "Bumpy Fabric") concept (Patent Applied for), the Stitchbase Weave, and the Multi-layer Triaxial, as described below.

#### BUMPY FABRICS

The Bumpy Fabric concept is simple. As illustrated in Figure 75 it proposes nesting configurations that overlap thru the thickness to provide increased interlaminar interface area and provide that separating forces be resisted by shear as well as tension. Such a configuration also makes accessible the same flexibility for tapering thickness that ordinary laminated construction provides.

While the concept is simple, the execution is not. First trial weaves (Figs. 76 and 77), adequately bumpy appearing on paper, turned out to be not very bumpy as fabricated. Further the intentionally widely spaced auxiliary warps (Fig. 77) did not spread laterally sufficiently during autoclave curing to fill the open spaces allotted for them. Voids and resin-rich areas that were created led to premature failures, especially in compression. Even so, lateral impact tests of bumpy fabric laminates using

these initial samples did appear to show reduced areas of damage compared to comparable conventional laminates.

To increase the bumpiness, a revised design was made (Fig. 78). Again, the bumps appeared greater in cross-sections on paper than as woven. Tests have not yet been performed on the revised design material.

Because of the continued lack of bumpiness of the revised design, a concept similar to a blade-stiffened construction is proposed (Figure 79). The auxiliary warps are woven vertically, perpendicular to the base fabric, as shown. With the addition of a double thickness "bulb" to the tops of the blades, a truly interlocking construction is achieved. As the crosssectional view reveals, the fill yarns that tie in the bumps truly provide thru the thickness reinforcement. This design has yet to be fabricated.

ł

#### STITCHBASE WEAVES

In a study related to this program (ref. 7), Dexter and Funk found notable improvements in thru the thickness properties of laminates stitched together with closely-spaced Kevlar stitches. About the only drawback to this stitching approach appeared to be damage induced by stabbing the stitching needles through the reinforcing yarns. To overcome this drawback a "Stitchbase" woven construction is proposed. Examples of such weaves are shown in Figure 80.

Triaxial weaves can be woven with regularly spaced holes in a wide variety of configurations. The necessary accuracy of yarn spacing of the Barber-Colman type triaxial loom together with the high Young's modulus of composite reinforcement yarns and the "locked intersection" characteristic of the Stitchbase Weaves insures that such construction can be accurately stacked with holes matching holes. Thus the potential is created for stitching through the holes without yarn damage. Furthermore, technology is available, as from the computer industry, for positioning the stitching needles (e.g. the soldering or welding heads for computer chip connections) with precision.

No stitchbase weaves have been made, however, their development is recommended.

#### THICK TRIAXIAL WEAVES

Recent exploratory development of triaxial weaving equipment with multiple harnesses (like a biaxial Dobby loom) opens new possibilities for triaxial fabrics. Samples of the Substrate Weave with auxiliary warps (fig. 81) have already been woven (in ref. 8). The next step is weaving of a Substrate Weave with Bulbous Blade auxiliary warps (fig. 82). Constructions like this have the potential to provide thru the thickness reinforcement with tapered thickness constructions (as with ordinary laminates, by changing number of plies), together with multi-axial yarns for improved shear stiffness compared to biaxial weaves.

Thick triaxial constructions can also be woven on the multi-harness, Barber-Colman type machine, providing a multi-layer fabric with thru the thickness running yarns as shown in Figure 83. While tapering thickness could probably be programmed into the weaving, it would have to be done so specifically for the end application and would not have the generality of applicability of the Bumpy constructions.

#### THE PERFECT WEAVE

A corollary to the development of the multi-harness triaxial loom is the potential for weaving triaxially interwoven triaxial constructions such as that shown in Figure 84. This construction (1-up, 1-down in all three directions) is the most nearly perfect of the triaxial weaves, having symmetries in all three in-plane directions. It is perhaps of greater interest as a textile than as a composite reinforcement; emphasis on its development is not proposed or recommended. As textile technology continues to advance, however, to the point that such weaves can be woven with high yarn counts, they may find application in composites in such places as in the vicinity of joints or other points of stress concentration to take best advantage of the gain in ultimate strength recently found for finely woven reinforcements.

#### GUIDELINES FOR IMPROVED FABRIC DESIGNS

In this section a summary is made of unexplored areas which appear to offer promise of performance improvements of various kinds. In some cases weaving capability already exists to produce the weave described, in others extensions to textile technology are required as will be noted. In all cases an assessment of projected potentials is attempted.

BIAXIAL FABRICS

#### Float Length

The curves of Figure 85 suggest that, for conventional weave constructions as the float length decreases below about 3 yarn diameters (corresponding to 4 harness satins) losses in in-plane reinforcement effectivenesses begin to increase rapidly. The likely cause is the increasing ratio of crimped to straight yarn with diminishing float lengths, possibly exaggerated by the abruptness of the 8-up/1-down, 6-up/1-down, 4-up/1-down nature of satins. If the weaves were 8-up/2-down, 6-up/2-down, etc. the direction reversals would be less abrupt and in-plane yarn effectivenesses can be expected to improve. The magnitude of improvement can be readily explored both analytically, by extending the model of Figures 21 and 22, and experimentally with fabric woven on conventional looms.

.....

#### <u>Braids</u>

Simple  $\pm \phi$  reinforcement configurations have been shown (ref. 22) to provide maximum combinations of in-plane axial - and shear-stiffness/density ratios. Thus either by themselves (probably mostly at values of  $\phi$  not greater than 20° to avoid excessive Poisson effects), or laminated with other configurations, they provide a maximum potential. To provide such configurations in any but small sizes, however, textile technology is deficient. Large braiding machines are not available. In this area machine development (perhaps borrowing from filament winding technology) must come first.

#### TRIAXIAL FABRICS

The development of multi-harness machinery to weave triaxial fabrics opens up new possibilities for triaxially woven reinforcements. Hitherto limited to the open Basic Weave and the l-up, l-down BiPlain Weave (Fig. 24), other more desirable configurations now become available. Guidelines for their development are given below.

#### Volume Fractions

Configurations are needed which provide maximum volume fraction reinforcement. The Substrate 2-up and 1-down Weave (Fig. 24) appears to be a step in that direction compared to the BiPlain. Much depends, however on the final resulting configurations of yarn cross-sections. Extensive photomicrographs, similar to Figure 1 for biaxial fabrics are needed. Longer float lengths than those in the Substrate Weave may be found preferable.

# Bumpy Fabrics

Triaxial weaves provide a desirable base for the Bumpy Fabric constructions (Figs. 17 and 18), allowing shear properties to be designed into the woven configuration. Development requires photomicrograph studies to define models for analysis and direct configurations toward maximum volume fractions.

#### Stitchbase Weaves

The development of Stitchbase Weaves (Fig. 19) to provide thru the thickness holes for sewing plies together can also be used for cases in which substantial thru the thickness reinforcement is required. Both cases present problems: (1) for sewing, the problem is to make the holes small enough; (2) for TTT reinforcement, the problems are primarily those of insertion. Both problems appear solvable, but (1) may lead to the use of 1K carbon yarns in the base fabric and (2) may lead to the development of special insertion systems. Further study is needed to evaluate these problems.

#### <u>Hybrids</u>

The triaxial weave lends itself well to hybridization - carbon fiber in the warps, Kevlar in the fill. Although the evaluations herein showed that in-plane performance of the hybrids is generally less than for all carbon construction, the losses were in many cases minor and possibly more than compensated for by increased toughness. Guidelines here involve: (1) definitization of toughness criteria so that quantitative measures of toughness can be found by test; and (2) tests of representative triaxial hybrids to determine their performance utilizing the criteria developed.

# Multilayer Constructions

The Substrate Weave lends itself well to multilayer constructions (Figure 83). Such constructions provide thru the thickness running yearns, and should not be prone to TTT failure. The TTT yarns can just as readily be hybridized, if desired, for further toughness increases. The recent advances in triaxial weaving technology make such weaves accessible.

These multilayer triaxial weaves embody all the desired directional reinforcement characteristics: (1) In plane axial, transverse and shear reinforcement, and (2) thru the thickness reinforcement. These individual properties may be traded off, one against another, but for the same volume fraction total these trade-offs involve no overall loss or gain; the sum total reinforcement remains the same. Lacking is only the flexibility of tapering provided by constructions like the Bumpy fabrics. The guidelines here are that both multi-layer and bumpy should be exploited.

#### OVERALL CONCLUSIONS AND RECOMMENDATIONS

# ANALYSIS METHODOLOGY

Analysis methodology, culminating in the NDPROP Computer code, appears adequate for multi-harness weaves in tension, <u>useful</u> (with arbitrary knockdown factors) for plain weaves in tension and multi-harness weaves in compression, <u>unconservative and to be used with caution</u> for plain weaves in compression. Further research, both analytical and experimental, in this last area is recommended.

#### POTENTIALS FOR PERFORMANCE

The development of the NDPROP code makes possible an analytical assessment of the difference in potential for performance of woven constructions and unidirectional tape laminates. Results of such an assessment are shown in Figure 85. This upper bound assessment shows less than 4% loss in longitudinal stiffness and ultimate tensile strength for weaves having float lengths corresponding to three or more harnesses. Corresponding first failures (in the vicinity of yarn cross-over) are calculated to occur at stresses 6%-8% below those for unidirectional tape lay ups. Thus, inevitably, for in-plane, two-dimensional constructions, such minor losses in performance potentials are to be expected.

Three dimensional reinforcement constructions such as braids like Omniweave, configurations approaching 3-D isotropy, and the like are not competitive in performance with constructions which are primarily 2-D planar, with minimal thru the thickness reinforcement. Trade-offs in properties to maximize performance for 3-D constructions include the minimization of the thru the thickness elements to the extent possible without encountering thru the thickness weakness problems. Further research, both analytical and experimental is recommended to quantify criteria for the magnitude of thru the thickness reinforcement required.

# ADVANCED WEAVES

Innovative approaches to the thru the thickness reinforcement problem, such as the Bumpy Fabric and the Stitchbase Weaves are in early stages of development. Continuing effort to bring them to fruition is recommended. Emphasis should be upon configurations providing angularly oriented in-plane yarns as needed for enhanced shear properties.

•

:

i

#### <u>REFERENCES</u>

- Cominsky, A., et al., "Manufacturing Development of DC-10 Advanced Rudder", NASA Contractor Report 159060, May 1981.
- 2. Ko, F.K., and Pastore, C.M., "Design and Formation of 3-D Fabrics for Advanced Composites" in NASA Conference Publication 2420, 1986.
- Crawford, James A., Jr., "Recent Developments in Multi-Directional Weaving" in NASA Conference Publication 2420, 1986.
- 4. Starnes, James H. Jr., Rhodes, Marvin D; and Williams, Jerry G., "The Effect of Impact Damage and Circular Holes on the Compressive Strength of a Graphite/Epoxy Laminate", NASA TM 78796, Oct. 1978.
- 5. Rhodes, Marvin D., and Williams, Jerry G., "Concepts for Improving The Damage Tolerance of Composite Compression Panels", NASA TM 85748, Feb. 1984.
- 6. Dow, N.F., and Rossi, G., et al., "Effect of Fineness of Weave on Crack Initiation and Ultimate Strength of E-Glass/Epoxy Woven Fabric Reinforced Composites in Tension at ±45° to Warp and Fill", Technical Final Report on Contract NAS1 17934, 1985.
- 7. Dexter, H. Benson, and Funk, Joan G., "Impact Resistance and Interlaminar Fracture Toughness of Through-the-Thickness Reinforced Graphite/Epoxy", presented at the 27th Structures, Structural Dynamics, and Materials Conference, May 19-21, 1986.
- Dow, N.F., "Extension of Triaxial Weaving Technology for Improved Composite Reinforcement". Technical Final Report on Contract NAS1-17877, 1986.

#### REFERENCES (Cont'd.)

- Hashin, Z., "Theory of Fiber Reinforced Materials", NASA CR-1974, 1972.
- 10. Rosen, B.W., Chatterjee, S.N., and Kibler, J.J., "An Analysis Model for Spatially Oriented Fiber Composites", ASTM STP 617, 1977.

:

.

÷

- 11. Dow, N.F., Derby, E., Ramkumar, R.L., and Rosen, B.W., "Theoretical Evaluation of Advanced Composites for Missile Structural Applications". Final Report on Contract N60921-77-C-0085, 1977.
- 12. Dow, N.F., Humphreys, E.A., and Rosen, B.W., "Guidelines for Composite Materials Research Related to General Aviation Aircraft". NASA CR 3720, 1983.
- 13. Dow, N.F., "Directions for 3-D Composite Reinforcement I: Intimations of Isotropy", presented at 21st Structures, Structural Dynamics and Materials Conference, Seattle, WA, May 12-14, 1980.
- 14. Stover, E.R., Mark, W.C., Marfowitz, I., and Mueller, W., "Preparation of an Omniweave-Reinforced Carbon-Carbon Cylinder as a Candidate for Evaluation in the Advanced Heat Shield Screening Program". AFML-TR-70-283, 1971.
- 15. Dow, N.F., Derby, E., Ramkumar, R.L., and Rosen, B.W., "Theoretical Evaluation of Advanced Composites for Missile Structural Applications", MSC Report No. TFR711/1143, 1978.
- 16. Dow, N.F., and Derby, E., "Survey of Metal Matrix Technology for Fabrication of Bridging Structures" Technical Final Report on Contract DAAG46-79-C-0067, 1980.

#### REFERENCES (Cont'd.)

- 17. Ishikawa, Takashi, "Anti-Symmetric Elastic Properties of Composite Plates of Stain Weave Cloth," Fibre Science & Technology, 15, p. 127, 1981.
- Ishikawa, Takashi and Chou Tsu-Wei, "Elastic Behavior of Woven Hybrid Composites," Journal of Composite Materials, 16, p. 2, 1982.
- 19. Walrath, David E., and Adams, Donald F., "Iosipescu Shear Properties of Graphite/epoxy Composite Laminates", NASA CR-176316, June 1985.
- 20. "Standard Tests for Toughened Composites", NASA Reference Publication 1092, 1983.
- 21. Williams, Jerry G., O'Brien, Kevin T., and Chapman III, A.J., "Comparison of Toughened Composite Laminates Using NASA Standard Damage Tolerance Tests", ACEE Composite Structures Technology Conference Proceedings, NASA CP 2321, 1984.
- 22. Dow, N.F., and Ramnath, V., "Evaluation and Criteria for 3-D Composites, in NASA Conference Publication 2420, 1985.

Predicted Elastic Properties for Selected T300/Epoxy Biaxial Woven Fabrics,  $v_{f}^{=0.6}$ Table 1.

| Property                                                    | Plain | SHE   | 5HS   | 8HS   | 06/0     |
|-------------------------------------------------------------|-------|-------|-------|-------|----------|
|                                                             |       |       |       |       | Laminate |
| $\mathbf{E}_{\mathbf{X}}, \ \mathbf{E}_{\mathbf{Y}}, \ Msi$ | 10.40 | 10.58 | 10.79 | 10.91 | 11.00    |
| E <sub>z</sub> , Msi                                        | 1.81  | 1.81  | 1.82  | 1.82  | 1.78     |
| G <sub>XY</sub> , Msi                                       | 1.00  | 0.95  | 0.87  | 0.80  | 0.69     |
| G <sub>xz</sub> , G <sub>yz</sub> , Msi                     | 0.77  | 0.72  | 0.68  | 0.66  | 0.62     |
| ر<br>xy                                                     | 0.064 | 0.061 | 0.056 | 0.052 | 0.045    |
| <sup>ر</sup> xz' <sup>ر</sup> yz                            | 0.456 | 0.436 | 0.420 | 0.415 | 0.414    |

•

.

•

•

-

.

.

52

Predicted Elastic Properties for Selected T300/Epoxy Triaxial Woven Fabrics,  $v_f^{=0.5}$ Table 2.

-

| Property              | BiPlain | Substrate | ±30/90 Laminate |
|-----------------------|---------|-----------|-----------------|
| E <sub>X</sub> , Msi  | 6.29    | 6.50      | 6.56            |
| E <sub>Y</sub> , Msi  | 6.29    | 5.97      | 6.56            |
| Ez, Msi               | 1.65    | 1.65      | 1.54            |
| G <sub>XY</sub> , Msi | 2.44    | 2.52      | 2.48            |
| G <sub>Yz</sub> , Msi | 0.86    | 0.83      | 0.51            |
| G <sub>zx</sub> , Msi | 0.86    | 0.82      | 0.51            |
| ب<br>xy               | 0.290   | 0.320     | 0.323           |
| ۶<br>م                | 0.395   | 0.389     | 0.304           |
| لر<br>XZ              | 0.104   | 0.092     | 0.071           |

Table 3. Predicted Strengths for Selected T300/Epoxy

Biaxial Woven Fabrics,  $v_f^{=0.6}$ 

| Property                                                       | Plain   | 3HS   | 5HS   | 8HS   | 0/90 Laminate |
|----------------------------------------------------------------|---------|-------|-------|-------|---------------|
| $\sigma_{\mathbf{X}}^{tu},~\sigma_{\mathbf{Y}}^{tu},$ ksi      | 100.2   | 100.7 | 101.7 | 104.5 | 106.5         |
| $\sigma_{\rm x}^{\rm cu}, \sigma_{\rm Y}^{\rm cu},  {\rm ksi}$ | 102.2   | 103.5 | 105.6 | 106.9 | 107.9         |
| $\sigma_z^{tu}$ , ksi                                          | 6.<br>6 | 6.9   | o.o   | 6.9   | თ.<br>თ       |
| σ <sup>cu</sup> , ksi                                          | 32.1    | 32.3  | 32.3  | 32.4  | 38.3          |
| r <sup>su</sup> , ksi<br>xy,                                   | 15.9    | 15.3  | 14.0  | 13.0  | 12.2          |
| r <sup>su</sup> r <sup>su</sup> ksi                            | 12.2    | 11.5  | 11.0  | 10.7  | 11.0          |

. . . . .

÷

.

•

•

Predicted Strengths for Selected T300/Epoxy =0.5 -0 7 7 11 . • . Table 4.

.

| _          |
|------------|
| ر<br>ال    |
| ~          |
|            |
| ~          |
| n          |
| ö          |
| Ă          |
| ς.         |
| 2          |
| 2          |
| 0          |
| 되          |
| _          |
| Ē          |
| ٥          |
| >          |
| 0          |
| 3          |
|            |
| -          |
| ര          |
| -          |
| <u>x</u> – |
| R          |
| Ä          |
| 5          |
| 2          |
|            |
|            |
|            |

| Property                                  | BiPlain | Substrate | ±30/90 Laminate |
|-------------------------------------------|---------|-----------|-----------------|
| $\sigma^{\mathrm{tu}}_{\mathbf{x}}$ , ksi | 78.6    | 84.2      | 87.5            |
| σ <sup>cu</sup> , ksi                     | 77.1    | 79.4      | 96.2            |
| $\sigma_{ m Y}^{ m tu}$ , ksi             | 55.7    | 52.0      | 59.4            |
| $\sigma_{\rm Y}^{\rm cu}$ , ksi           | 62.0    | 58.4      | 64.6            |
| $\sigma_{\mathbf{z}}^{\mathrm{tu}}$ , ksi | 8.7     | ß.7       | 6,6             |
| o <sup>cu</sup> , ksi                     | 28.2    | 28.2      | 32.3            |
| r <sup>su</sup> ksi<br>xy                 | 45.9    | 48.0      | 52.0            |
| rsu, ksi<br>yz,                           | 14.3    | 13.0      | 10.6            |
| r <mark>su</mark> ksi                     | 16.5    | 13.7      | 11.0            |

# Geometrical Parameters Used for Property Calculations of Biaxial Woven Fabrics Table 5.

| Weave Parameter           | Plain   | Oxford            | SHS     | 8HS     |
|---------------------------|---------|-------------------|---------|---------|
| Ply thickness, in         | .01125  | .0106             | .0106   | .0106   |
| ۲f                        | . 667   | .620              | .640    | .640    |
| L, in                     | 1/19    | 1/18              | 1/18    | 1/18    |
| $A_{f}$ , in <sup>2</sup> | .000175 | (warp)<br>.000175 | .000175 | .00175  |
| <sup>v</sup> fb           | .7428   | (warp)<br>.6457   | .6857   | .6857   |
| vfp                       | . 8980  | .9603             | .9334   | ,9334   |
| A, in <sup>2</sup>        | .000236 | .000271           | .000255 | .000255 |
|                           |         | (Marp)            |         |         |

•

.

. .. .....

÷

:

Comparison of Calculated versus Measured T300/Epoxy Biaxial Woven Fabric Elastic Properties Table 6.

.

.

|                                      | a) nield | 7 = 667)    | Oxford ( | v _= .620) | 2HS ( Λ <sup>ε</sup> = | .640) | 4 (V  | e=.640) |
|--------------------------------------|----------|-------------|----------|------------|------------------------|-------|-------|---------|
|                                      | 1 mrbr 1 | f · · · · · |          | , Į        | I.                     |       |       |         |
| Property                             | Calc.    | Meas.       | Calc.    | Meas .     | Calc.                  | Meas. | Calc. | Meas.   |
| $E_{\rm X}^{+(1)}$ Msi               | 11.62    | 9.13        | 10.69    | 9.63       | 11.56                  | 10.05 | 11.61 | 10.59   |
| $\mathrm{E}_{\mathrm{X}}^{-(2)}$ Msi | 11.62    | 9.14        | 10.69    | 8.26       | 11.56                  | 8.88  | 11.61 | 9.15    |
| E <sub>Y</sub> ,Msi                  | 11.62    | 8.83        | 10.77    | 9.68       | 11.56                  | 10.09 | 11.61 | 10.35   |
| E <sub>Y</sub> , Msi                 | 11.62    | 8.59        | 10.77    | 8.44       | 11.56                  | 8.80  | 11.61 | 8.94    |
| G <sub>XY</sub> ,Msi                 | 1.17     | t           | 10.99    | I          | 10.89                  | 0.810 | 0.90  | 0.811   |
| <sup>+</sup> **                      | 0.061    | 0.113       | 0.062    | 0.057      | 0.051                  | 0.056 | 0.052 | 0.054   |
| <sup>ر</sup> "xy                     | 0.061    | 0.084       | 0.062    | 0.063      | 0.051                  | 0.056 | 0.052 | 0.056   |

(1) + indicates tension(2) - indicates compression

| Table 7. | Compari | son of | Calculated | versus | Measured | T300/Epoxy |
|----------|---------|--------|------------|--------|----------|------------|
|          | Biaxial | Woven  | Fabric Str | engths |          |            |

I

|                       | Plain (v <sub>f</sub> =    | =.667) | Oxford (v <sub>f</sub> =   | 620)  | 5HS ( v <sub>f</sub>       | =.640) | 8HS(V <sub>f</sub> =.6     | 40)   |
|-----------------------|----------------------------|--------|----------------------------|-------|----------------------------|--------|----------------------------|-------|
| Property              | Calc.                      | Meas.  | Calc.                      | Meas. | Calc.                      | Meas.  | Calc.                      | Meas. |
| σ <sub>x</sub> ⁺Ĵ ksi | 68.1 <sup>(1)</sup> /111.8 | 79.8   | 75.3 <sup>(1)</sup> /102.5 | 90.5  | 73.9 <sup>(1)</sup> /110.7 | 105.7  | 74.0 <sup>(1)</sup> /110.7 | 121.3 |
| σ <sub>x</sub> , ksi  | 114.1                      | 57.9   | 105.0                      | 73.3  | 113.3                      | 100.7  | 113.6                      | 118.6 |
| σ <sup>+</sup> , ksi  | 68.1 <sup>(1)</sup> /111.8 | 68.4   | 70.5 <sup>(1)</sup> /103.6 | 96.3  | 73.9 <sup>(1)</sup> /110.7 | 109.2  | 74.0 <sup>(1)</sup> /110.7 | 115.8 |
| o <sup>-</sup> , ksi  | 114.1                      | 53.2   | 105.7                      | 101.6 | 113.3                      | 109.8  | 113.6                      | 112.8 |
| <sup>r</sup> xy, ksi  | 15.1                       | I      | 16.1                       | I     | 13.3                       | 16.0   | 13.5                       | 16.1  |

+ Indicates tension
 - Indicates compression
 First Failure

•

•

;

ł

•

.

į

منام والمرازيان والمراز والموال والمستحد معدور ومستحد والمستحد والمستحد والمرابع

. . . .

| Moduli              |         |
|---------------------|---------|
| Shear               |         |
| Fabric              | sts     |
| )/Epoxy             | near Te |
| ed T30(             | escu Sl |
| Measur              | n Iosip |
| Versus              | hs fro  |
| ulated <sup>1</sup> | Strengt |
| Calc                | and     |
| Table 8.            |         |

,

|                       | Oxford Weav | ve (v <sub>f</sub> = .620) | 5 Harness Wea | ve (v <sub>f</sub> = .640) | 8 Harness We | ave (v <sub>f</sub> = .640) |
|-----------------------|-------------|----------------------------|---------------|----------------------------|--------------|-----------------------------|
| Property              | Measured    | Calculated                 | Measured      | Calculated                 | Measured     | Calculated                  |
| G <sub>XY</sub> , Msi | 0.770       | 066.0                      | 0.760         | <b>9</b> 68.0              | 0.978        | 0.901                       |
| G <sub>yz</sub> ,Msi  | 0.570       | 0.744                      | 0.550         | 0.743                      | 0.500        | 0.724                       |
| G <sub>zx</sub> , Msi | 0.680       | 0.806                      | 0.610         | 0.743                      | 0.490        | 0.724                       |
| t <sub>xy</sub> , ksi | 16.5        | 16.1                       | 18.5          | 13.3                       | 19.4         | 13.4                        |
| r <sub>yz</sub> , ksi | 10.6        | 11.9                       | 10.9          | 11.0                       | 11.0         | 10.8                        |
| r <sub>zx</sub> , ksi | 11.0        | 13.1                       | 10.9          | 11.0                       | 10.2         | 10.8                        |

xy - in-plane shear

yz,zx - transverse shear

# Geometrical Parameters Used for Property Calculations Table 9.

of Triaxial Woven Fabrics

| Weave Parameter                  | T300/934 | Kev/934 |
|----------------------------------|----------|---------|
| Ρlγ thickness, in                | .022     | .025    |
| ۷f                               | .451     | .389    |
| L, in                            | 1/18.5   | 1/18.5  |
| A <sub>f</sub> , in <sup>2</sup> | .000175  | .00017  |
| vfb                              | . 7      | . 65    |
| v<br>fp                          | .6429    | . 5980  |
| A, in <sup>2</sup>               | .000250  | .000262 |

:

.

:

:

-

•

••••••

-

|                                 | T300/934  | (v <sub>f</sub> =.45) | Kev/93 | 4 (v <sub>f</sub> =.39) |
|---------------------------------|-----------|-----------------------|--------|-------------------------|
| Property                        | Calc.     | Meas.                 | Calc.  | Meas.                   |
| $E_{\mathbf{x}}^{+(1)}$ , Msi   | 5.64      | 4.60                  | 2.63   | 1.81                    |
| $E_{x}^{-(2)}$ , Msi            | 5.64      | 4.56                  | 2.63   | 2.01                    |
| ν <mark>+</mark> , Msi<br>γ     | 5.64      | 5.05                  | -      | -                       |
| E <sup>_</sup> , Msi            | 5.64      | 5.13                  | -      | -                       |
| ν<br>×y                         | 0.284     | 0.234                 | 0.293  | 0.256                   |
| <sup>v</sup> xy                 | 0.284     | 0.232                 | 0.293  | 0.305                   |
| ν +<br>γx                       | 0.284     | 0.250                 | -      | -                       |
| ν_<br>yx                        | 0.284     | 0.268                 | -      | _                       |
| $\sigma_{\mathbf{x}}^{+}$ , ksi | 42.1/69.8 | 36.8                  | 32.8   | 24.4                    |
| a_, ksi                         | 68.3      | 42.7                  | 14.1   | 18.5                    |
| σ_, ksi<br>Υ                    | 38.0/49.8 | 41.5                  | -      | -                       |
| σ_, ksi                         | 55.5      | 49.6                  | _      | -                       |

Table 10. Comparison of Calculated Versus Measured Triaxial Woven Fabric Properties and Strengths

-

- (1) + indicates tension
- (2) indicates compression

Table 11. Comparison of Fabric Versus Tape Compression after Impact Test Data, T300/Epoxy

| Property                                                | Oxford Weave | 5HS Weave | 8HS Weave | Tape Laminate |
|---------------------------------------------------------|--------------|-----------|-----------|---------------|
| ٧f                                                      | . 633        | .669      | .656      | 1             |
| Failure Stress $\sigma_{\mathbf{X}}^{\mathrm{C}}$ , ksi | 25.75        | 26.78     | 26.40     | 21.00         |
| Failure Strain, ε <sup>C</sup> , %                      | .4196        | .4152     | .4010     | .2887         |
| Modulus s <sup>c</sup> , Msi                            | 6.44         | 6.79      | 6.88      | 7.37          |

- 62
- Layup: [+45/0/-45/90]<sub>3S</sub> for fabrics

Impact Energy 20 ft. - 1b.

:

:

:

į

ī,

•
Comparison of Fabric Versus Tape Data for NASA standard Tourbness Tests. T300/Epoxy Table 12.

,

|                                     | Tape Laminate | 0.443,                                                           | 44.53<br>36.53<br>.56003                                                                                                                                                                                                                                                                                                        |
|-------------------------------------|---------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| naara louginiess rescar root retail | 8HS Weave     | 2.25                                                             | 50.0<br>.4613<br>41.8<br>.5600<br>30.9<br>.3633<br>38.2<br>.5770                                                                                                                                                                                                                                                                |
|                                     | 5HS Weave     | 1.85                                                             | 50.2<br>.4820<br>41.2<br>.5780<br>30.2<br>35.9<br>.5573                                                                                                                                                                                                                                                                         |
|                                     | Oxford Weave  | 2.23                                                             | 46.3<br>.4683<br>38.5<br>.5560<br>.5560<br>.5560<br>.3180<br>30.0<br>.4903                                                                                                                                                                                                                                                      |
| 0 L G                               | Property      | Double Cantilever Beam<br>G <sub>IC</sub> , lb./in. <sup>1</sup> | Open Hole TensionFailure Stress, ksiFailure Strain, %1Failure Stress, ksiFailure Strain, %2Failure Stress, ksiFailure Stress, ksi |

1 - Layup: [0<sup>°</sup>]<sub>8S</sub>

 $2 - Layup: [+45/0/-45/90]_{3s}$ 

3 - Tape Data From [21]

| Property                        | Face-Ply   | Internal-Ply | 4-Ply      | 12-Ply     |
|---------------------------------|------------|--------------|------------|------------|
| E <sub>x</sub> , Msi            | 11.72      | 12.80        | 12.48      | 12.70      |
| E <sub>y</sub> , Msi            | 7.06       | 4.66         | 5.56       | 4.93       |
| E <sub>z</sub> , Msi            | 1.76       | 1.87         | 1.82       | 1.86       |
| G <sub>xy</sub> ,Msi            | 0.69       | 0.64         | 0.66       | 0.65       |
| G <sub>yz</sub> , Msi           | 0.89       | 0.81         | 0.79       | 0.80       |
| G <sub>zx</sub> , Msi           | 0.76       | 0.64         | 0.74       | 0.67       |
| ν<br>xy                         | 0.032      | 0.069        | 0.050      | 0.063      |
| ν<br>yz                         | 0.499      | 0.431        | 0.432      | 0.431      |
| <sup>۷</sup> zx                 | 0.057      | 0.041        | 0.051      | 0.044      |
| $\sigma_{\mathbf{x}}^{+}$ , ksi | 78.4/123.9 | 80.8/137.6   | 80.9/133.2 | 80.8/136.3 |
| σ <sup>+</sup> , ksi<br>Υ       | 51.4/67.6  | 29.1/40.3    | 34.6/50.6  | 30.7/43.4  |
| $\sigma_{x}^{-}$ , ksi          | 122.3      | 133.3        | 130.1      | 132.4      |
| σ_, ksi                         | 73.8       | 48.7         | 58.0       | 51.5       |

.....

Ī

Ì

. . . .

Table 13. Calculation of Elastic Properties and Strengths of Original "Building-Block" Auxiliary Warp Configuration

+ indicates tension

- indicates compression

|                                 | Face-Ply   |          | 4-Ply      |          | 12-Ply     |          |
|---------------------------------|------------|----------|------------|----------|------------|----------|
| Property                        | Predicted  | Measured | Predicted  | Measured | Predicted  | Measured |
| $E_{x}^{+}$ , Msi               | 11.72      | 8.60     | .12.48     | 9.11     | 12.70      | 9.66     |
| E <sup>+</sup> , Msi<br>Y       | 7.06       | 5.92     | 5.56       | 5.19     | 4.93       | 4.48     |
| E <sup>-</sup> , Msi            | 11.72      |          | 12.48      |          | 12.70      | 8.81     |
| E <sup>-</sup> , Msi            | 7.06       |          | 5.56       |          | 4.93       | 4.67     |
| ν <sup>+</sup><br>xy            | 0.032      | 0.148    | 0.050      | 0.150    | 0.063      | 0.134    |
| ν <sup>+</sup><br>γx            | 0.019      | 0.098    | 0.022      | 0.083    | 0.024      | 0.080    |
| ν_<br>xy                        | 0.032      |          | 0.050      |          | 0.063      | 0.136    |
| v_<br>yx                        | 0.019      |          | 0.022      |          | 0.024      | 0.031    |
| $\sigma_{\mathbf{x}}^{+}, ksi$  | 78.4/123.9 | 71.0     | 80.9/133.2 | 77.35    | 80.8/136.3 | 82.5     |
| σ <sup>+</sup> y,ksi            | 51.4/67.6  | 45.2     | 34.6/50.6  | 37.86    | 30.7/43.4  | 34.9     |
| $\sigma_{\mathbf{x}}^{-}$ , ksi | 122.3      |          | 130.1      |          | 32.4       | 45.6     |
| σ_y, ksi                        | 73.8       |          | 58.0       |          | 51.5       | 34.9     |

Table 14. Comparison of Predicted and Measured Properties and of Original "Building-Block" Auxiliary Warp Configuration

3

+ indicates tension

- indicates compression

,

| Property              | Nested   | Nested       | Nested Face      |  |  |
|-----------------------|----------|--------------|------------------|--|--|
| Fropercy              | Face-Ply | Internal-Ply | & Internal Files |  |  |
| E <sub>x</sub> , Msi  | 11.93    | 13.03        | 12.56            |  |  |
| E <sub>y</sub> , Msi  | 6.67     | 5.30         | 5.89             |  |  |
| E <sub>z</sub> , Msi  | 1.71     | 1.73         | 1.72             |  |  |
| G <sub>xy</sub> , Msi | 0.66     | 0.65         | 0.66             |  |  |
| G <sub>yz</sub> , Msi | 0.62     | 0.59         | 0.60             |  |  |
| G <sub>zx</sub> , Msi | 0.69     | 0.70         | 0.70             |  |  |
| ν<br>yx               | 0.050    | 0.064        | 0.057            |  |  |
| νyz                   | 0.374    | 0.364        | 0.368            |  |  |
| ν<br>zx               | 0.052    | 0.047        | 0.049            |  |  |
| t, in                 | 0.035    | 0.047        | 0.082            |  |  |
| <sup>v</sup> f        | 0.55     | 0.54         | 0.54             |  |  |

| Table 15. | Results of | of Elastic | Property   | Calculations  | on  | Revised |
|-----------|------------|------------|------------|---------------|-----|---------|
|           | Design Au  | uxililary  | Warp Reinf | forcement Wea | ves |         |







Plotted is tensile strength/density ratio  $rac{\sigma_{\mathbf{X}}}{
ho}$  to meet stiffness require-Tensile Performance Evaluations, -Various Materials and Configurations. Figure 2.

If the reinforcement is configured for high shear stiffness, zero shear stiffness is allowable, unidirectional reinforcement is most Shear stiffness is dominant; if however, the extensional stiffness may become critical. ы Б  ${\mathfrak G}_{\mathrm{XY}}$  and extension  ${\mathfrak O}^{\mathfrak C}$ ments in shear efficient.

ï

. . . . . . . . . . . . . . . .

÷



ļ

Configurations. The  $2\phi^{\circ}/90^{\circ}$  configuration has higher strength/density values than the  $0^{\circ}/\pi\phi^{\circ}$  configuration up to the maximum shear stiffness Tensile Performance Evaluations, - Comparison of  $0^\circ/\pm\phi^\circ$  and  $\pm\phi^\circ/90^\circ$ (∳=±45°). Figure 3.



for low shear stiffness requirements.

.

- - - - -



and Kevlar. Kevlar can not compete with T-300 for any shear stiffness requirement. Various Proportions of  $\pm\phi^\circ/90^\circ$  T-300, Kevlar, and Hybrids of T-300 and Kevlar. Except for the region of tensile stiffness requirements  $5_{X10}^{8} \epsilon \frac{E}{n}_{s} < 13_{X10}^{8}$  the hybrid properties all fall between those for T-300



Tensile Performance Evaluations, -Effect of Adding Through-the-Thickness Reinforcements to  $0^\circ/$ : $\phi^\circ$  2-D Reinforcement Configurations Having Equal Performance losses due to TTT reinforcement are substantial for low Volume Fraction Reinforcements in All Three Planar Directions. shear stiffness requirements.

. . . .

••••••

•



Tensile Performance Evaluations, -Effects of Adding Through-the-Thickness Reinforcements to  $\pm \phi^{\circ}/90^{\circ}$  2-D Reinforcement Configurations Having Equal Volume Fraction Reinforcements in the Three Planar Directions. Performance losses can be substantial for high shear stiffness requirements. Figure 7.



While there is an actual gain in  $\frac{\sigma}{\rho}$  for low shear stiffness requirements due to the delay of a premature transverse in-plane failure mode, there are substantial performance losses for the higher shear stiffness Thickness Reinforcements to " $\psi^{\circ}/90^{\circ}$  T-300 2-D Reinforcements Having Equal Volume Fraction Reinforcements in the Three Planar Direction. requirements.

- -

•









sional stiffness/àensity ratios  $\frac{G_{XY}}{\rho}$  and  $\frac{E_X}{\rho}$ . As in tension, shear is the Configurations. Plotted is the indicator number  $I_{\mathcal{D}}^{*}$  vs. shear and extendominant criterion.  $1\frac{*}{2}$  is a combined measure of strength and buckling resistance for a given weight-the greater  $\mathbf{I}_2$  the less the weight.

------

and the second se

. . . . . . .



Figure 11. Summary Measure of Penalty  $-\Delta I_p^*$  for Thru the Thickness Reinforcement v for Compressive Loadings. Curve is typical, though specifically accurate as drawn for  $\pm 30^{\circ}/90^{\circ}$  guasi-isotropic in-plane reinforcement configurations. See also figure 12.





;

:

• • • • •

-

. . . . .

. . . . . . .

-

.





•

į

and the second time are it considered in the second

a Prime a city more a state of



Bottom View

Figure 15. Revised (Mark II) Bumpy Fabric Stacked the Auxiliary Warps Two High, as Shown Here. Whether this is adequate to provide appreciable thru the thickness reinforcement is yet to be determined.



ì

Ŧ





Figure 17. Substrate Triaxial Weave with Auxiliary Warps. The Substrate shown is loosely woven to a density equivalent to that of a tightly woven biaxial plain weave to illustrate the construction. Normally the Substrate would be snugly packed together so that the -30° warps would not be visible. (See also fig. 24).



Figure 16. Bulbous Blade Auxiliary Warps in a Triaxial Substrate Weave Base. The Substrate Weave is shown loosely woven to permit the -30° yarns to appear.



Examples of Triaxial Stitchbase Weaves, Providing Regularly Spaced Holes, Precisely Located by Locked Intersections of the Yarns, Through Which Stitching Can Be Done to Tie Plies Together Without Damage to the Yarns. Figure 19.



## ORIGINAL PAGE IS



÷

Figure 21. Tepresentative Cross Sectional Area Elements of Woven Fabric of Various Float Lengths (i.e. Various Hærness Numbers) as Used in NDPROP Analysis.



. . .

•



Definition of Symbols not defined in figure:

A<sub>f</sub> :cross-sectional area of fibers in yarn
V<sub>fb</sub>:volume fraction of fibers in yarn
V f :overall fiber volume fraction
e :eccentricity of ellipse = b/a
V<sub>fp</sub>:volume fraction of yarns within repeating element
Procedure: Given L, T and A<sub>f</sub>
1. Calculate b = 0.25 T
2. Assume V<sub>fb</sub>

3. Calculate  $e = \pi b^2 v_{fb}^{/A} / A_f$ 

Figure 23. Cross Sectional View of Elliptical-Section Yarns for Triaxial Weaves, and Procedures to Define Yarn Geometry. 4. Solve for r, where b < r < b/e :

$$\tan^{-1}\frac{2b}{L} + \tan^{-1}\sqrt{\frac{L^2 - 4r^2 - 2Tr}{2r + 2b}} + \tan^{-1}\sqrt{\frac{r^2 - b^2}{b^2 - e^2r^2}} = 90^{\circ}$$

5. Determine fabric geometrical parameters:

$$\alpha = \tan^{-1} \frac{2b}{L}$$
  
$$\beta = \tan^{-1} \sqrt{\frac{L^2 - 4r^2 - 2Tr}{2r + 2b}}$$

$$\gamma = \tan^{-1} \sqrt{\frac{r^2 - b^2}{b^2 - e^2 r^2}}$$

$$\ell = \sqrt{L^2 - 2Tr - 4r^2}$$

6. Compute 
$$v_f = \frac{3A_f}{L^2 T} \begin{bmatrix} l + 2a_o & \int_{0}^{1-1} \left(\frac{r_o}{a_o} \sin\gamma\right) \\ 0 & \sqrt{1 - \sin^2\theta \sin^2\phi} d\phi \end{bmatrix}$$

where

$$r_{o} = r+b;$$

$$a_{o} = \frac{r_{o}b_{o}\sin\gamma}{\sqrt{b_{o}^{2} - r_{o}^{2}\cos^{2}\gamma}};$$

 $\theta = \sin^{-1} \sqrt{1 - \frac{b_0^2}{a_0^2}}$ 

and

7. Calculate 
$$\overline{v}_{fp} = v_f / v_{fb}$$

Figure 23. Cross Sectional View of Elliptical-Section Yarns for Triaxial Weaves, and (cont'd) Procedures to Define Yarn Geometry.

2

2

÷



91

The warps are not interwoven.



5

-

the second se

. .

ORIGINAL PAGE IS



Bottom View

Figure 26. Revised Design Auxiliary Warp Construction. Revisions from first design include stacking of the auxiliary warps to make the fabric more bumpy and increasing float lengths to improve compressive properties.



Figure 27. Cross Sections of Revised Face Ply Reinforcement Showing Auxiliary Warp Tie-Down Every Fifth Pick, Alternating Over-and-under the Individual Yarn Pairs of the Auxiliaries.



Figure 28. Cross Sections of Revised Internal Ply Reinforcement with Similar Tie-Downs for the Auxiliaries to Those in the Face Plies. From this figure the construction appears much more bumpy than the original auxiliary warp construction (fig. 14). As woven, however, the difference did not appear nearly as great.





Cell Volume =  $4L \times 10L \times .082"$ L = 1/18"

Figure 29. Nominal Nesting of Multi-Ply Revised Auxiliary Warp Constructions Indicating Magnitude of Through-the-Thickness Running and Overlapping Fill Yarns.



. . .



the second se

I I I MANUALLY I INTO I IIII I IIIII I MANUARMAN I I

. . . . . .


- Figure 32. Evaluations of Intrinsic In-Plane Properties of Multi-Directional Reinforcements in Tension.-
- T-300  $\pm \phi$  ^90° configurations. Addition of 90° reinforcement to .111

Fractions of 10% to 20% of the total reinforcement volume fraction the  $\pm \phi$  configurations in smail amounts decreases the values of arphiachieved and increases the shear stiffness/density ratios. Larger additions decrease both the tensile and snear properties. appear to maximize the combined properties.







configuration is not as salubrious as for T-300 (fig. 32). Kevlar reinforcements in any combina-Kevlar  $\pm \phi^{\circ}/90^{\circ}$  configurations. Addition of 90° reinforcement to tion of proportions of the  $\pm \phi$   $^{\prime}/90$  configuration do not surpass range A compressive failure mode in the 90° filaments due to Poisson the aluminum alloy properties for combined tension and shear contraction is encountered in the low volume fraction  $90^\circ$ found attractive in T-300. stiffness. the ±∲° ( ιν.

ł

and states a state of the state

-



stiffness/density ratio.

ORIGINAL PAGE IS OF POOR QUALITY







Kevlar  $0^{\circ}/!\phi^{\circ}$  configurations are not susceptible to the compressive failures of the  $\circ \phi$   $^{\circ}/90$   $^{\circ}$  reinforcements but even so are not competitive in performance with T-300 (c.f.Fig.32). . Γυ

÷

the second se

.



predominate. It is in the intermediate, mixed region that the  $\pi\phi^{2}/90^{\circ}$ 

configuration shows slight superiority.



If Keinforcement Configurations and Properties Are Such that Premature Failure Analysis and a Cumulative Failure Analysis is not Substantial, and, Importantly, the Configuration is Apt to Have Good Performance First Failures Are Not Encountered, the Difference Between a First Figure 37.

Characteristics, as Illustrated Here for the Well Proportioned T-300

•

i

Ì

. ....

and an example of the structure of the first of the structure of the struc

Te a cent conte

•

a (90 Configuration.

ORIGINAL PAGE IS OF POOR QUALITY



Figure 38. Evaluations of Effects of Thru the Thickness Reinforcement.-

Reinforcements in All Three Directions, with Various Amounts of TTT Tension on a T-300/5208  $\circ \phi$   $^{\circ}/90$  configuration Having Equal In-Plane Reinforcement. Failure mones are not affected by the addition of the TTT filaments; effects on strengths are orderly and percentagewise less than the percent ITT reinforcement. • ⊁⊶i

### ORIGINAL PAGE IS OF POOR QUALITY



Figure 39. Evaluations of Effects of Thru the Thickness Reinforcement.-

of TTT Reinforcement. Failure modes are not affected by the addi-Plane Reinforcements in Ail Three Directions, with Various Amount Tension on a Keviar/5208  $\pm \phi^{\circ}/90^{\circ}$  Configuration having Equal Intion of the TTT filaments; effects on strengths are orderly and percentagewise less than the percent TTT reinforcement. . 년 년

•

1

•

### ORIGINAL PAGE IS OF POOR QUALITY



Figure 40. Evaluation of Effects of Thru the Thickness Reinforcement.-

by the addition of the Tension on a T-300 0 / 10° configuration having equal reinforce-TTT filaments; effects on strengtns are most substantial for ments in all three directions, with various amounts of TTT reinforcement. Fajure modes are affected inghest strength base configurations. 111



Figure 41. Evaluation of Effects of Thru the Thickness Reinforcement.-

TTT filaments; effects on strength are most substantial for highest reinforcement. Failure modes are affected by the addition of the Tension on a Keviar/5208 0 $^{\circ}/\pm\phi$ ° configuration naving equal reinforcements in ail three directions, with various amounts of TTT strength base configurations at nign TTT reinforcements. . ν Ξ ν

ļ

!

and a red meritime brance a

-

. . . . . . .

. . . . .

I A MARKED IN A



Т-300/5208





Evaluation of Intrinsic In-Plane Properties of Multi-Directional Reinforcements in Compression.-Figure 43.

T-300 long-float blaxial weaves and braids. The plaxial plain weave The oraid (  ${}_{\mathcal{I}}\phi^{\circ}$  configuration) can have substantial shear stiffness is cnaracterized by minimal shear stiffnesses for all proportions. • •-4

combined with very high values of  $-\frac{-\sigma}{\sqrt{X}}$  - over five times that of the

aluminum alloy for the same shear stiffness/density ratio. 9

1

1.1.1

the second se

-

•

. . .

• • • • • • • •

110

ORIGINAL PAGE IS OF POOR QUALITY



ORIGINAL PAGE IS

OF POOR QUALITY

Kev-49/5208

Evaluation of Intrinsic In-Plane Properties of Multi-Directional Reinforcements in compression.-Figure 44.

the oraid by (10° configuration) good shear stiffness compined with Kevlar long-float blaxial weaves and braids. The blaxial weave is characterized by minimal shear stiffnesses for all proportions; - slightly better than that of the aluminum good values of  $\frac{-\alpha}{-x}$ . 3 + |-|

ailoy for the same snear stiffness/density ratio.







In-Plane Properties of Multi-Directional Reinforcements in Compression.-Figure 46. Evaluation of Intrinsic

IV. T-300  $\pm \phi$ °/90° configuration. Addition of 90° reinforcement to the ×

Fractions of 10% to 20% of the total reinforcement volume fraction Larger  $\pm \phi \circ$  configuration in small amounts decreases the values of achieved and increases the shear stiffness/density ratios. additions decrease both the tensile and shear properties. appear to maximize the combined properties.



- T-300 0  $^{\prime}/^{\pm}\phi$  configurations are relatively insensitive to changes in Optimal proporproportions of filaments in the various directions. tions provide slightly lower combined tension-shear -

stiffness/density ratios than  $\pm \phi^{*}/90^{\circ}$  configurations but still yield values of  $rac{-\sigma_{\mathrm{X}}}{
ho}$  four times that of the aluminum alloy at the same

•

....

- - - - - - -

-

•

:



\$



ment are non-existent or very low the sımple-to-weave 0°/90° weave (or for that matter unidirectional tape) can yield as nign values of \* VI.Overali comparisons of configurations. If shear stiffness require-. I<sub>2</sub> as the other configurations. The triaxial ±0°/90° weave yields

generally the hignest computations of  $1^*_{2}$  and  $\frac{e^2}{p}$  .



116

ī



Triaxial Weave  $\pm \phi^\circ/90^\circ$  , Kevlar in the  $90^\circ$  direction, in tension. As in the all Kevlar  $\pm \phi^{\circ}/90^{\circ}$  configurations (fig. 33) premature compressive failures are encountered in the  $90^\circ$  filaments with resulting poor values of <u>x</u> 6 ΙΙ.



Figure 51. Evaluations of Hybrids.-

Here premature failures transverse to the 90° fibers reduce the III. Triaxial Weave  $\pm \phi^{\circ}/90^{\circ}$ , T-300 in the 90° direction, in tension. values of  $\int_{\rho}^{\sigma} \mathbf{x}$  compared to those for all Kevlar (Fig.33) at low values of  $\frac{\mathsf{G}}{\frac{-\pi \mathsf{Y}}{\rho}}$  but avoid the even more deleterious effects of

compression failure there shown for higher values of  $\frac{G}{
ho}$ .

1

••••

:





Triaxial weave  $0^{\circ}/\pi\phi^{\circ}$ . Kevlar in the  $0^{\circ}$  direction, in tension. A generally effective configuration with no premature failure modes. Potential gains by a factor four compared to the aluminum alloy are evident. ΙV.



Figure 53. Evaluations of Hybrids.-

generally effective configuration with no premature failure modes. Å Triaxial Weave  $0^{\circ}/\pm\phi^{\circ}$ , T-300 in the 0° direction, in tension. Potential gains by a factor greater than three are indicated. . >



curves drawn to the individual  $0^{-1/2}\phi^{\circ}$  curves of figures 34, 35, and 53 show that the hybrids fall between the all Kevlar and all T-300

б<sub>ж</sub>у c

values of



Figure 55. Evaluations of Hybrids.-

The all T-300 has the highest values Envelope curves drawn to the individual  $\pm \phi^{\circ}/90^{\circ}$  curves of figure 32, 33 and 50 show that the hybrids fall between the all Kevlar Overall evaluations of  $\pm \phi^{\circ}/90^{\circ}$  configurations, in tension. and all T-300 constructions. VII.

 $\frac{\sigma_{\mathbf{X}}}{\rho}$  for all values of  $\frac{G}{\rho}$ .

Q

of

.

-



•. - Figure 56. Evaluations of Hybrids.-

tension. The use of Kevlar TTT eliminates the premature failures induced by T-300 TTT(Fig.56) resulting in regions of improved Effects of thru the thickness reinforcement in  $0^\circ/\pm\phi^\circ$ , in performance. VIII.



ेत्र .....भ

Figure 57. Evaluations of Hybrics.-

Kevlar, in tension. The use of Keviar TTT eliminates the premature Effects of turu the thickness reinforcement in  $0^\circ/\pi\phi^\circ$ ,  $v_{\pm 3}^\circ$ IX.

failures induced by T-300 [7] (Fig.56) resulting in regions of improved performance.

к 1

÷



- Effect of thru the thickness reinforcement, in τψ°/90° in tension. Baseline curves for all 1-300 are reproduced (from Fig.38) here for convenience. ×.



in tension. The use of Keviar is substantially less damaging to the performance of the reunforcement than 7-300 TIT (see Fig. 50).

i

-

а 1

•

.



0° T-300

•

## ORIGINAL PAGE IS DE POOR QUALITY

.TIX

#### **ORIGINAL PAGE IS** OF POOR QUALITY



Triaxial weaves  $0^{\circ}/2\phi^{\circ}$ , T-300 in the  $0^{\circ}$  direction, in

1-300 floers make the performance undistinguished, though superior to compression. Fremature compressive failure in the  $\pm \phi^\circ$  Keviar the alumnum alloy because of the effectiveness of the  $0^\circ$ ELDORE.



compression. Here the premature failure occurs in the 0° Kevlar floers. Performance is barery petter than the aluminum avioy. Triaxial weaves  $0^\circ/z\phi^\circ$ , Kevlar in the  $0^\circ$  direction, in

XIV.



- Figure 63. Evaluations of Hybrids.-
- configuration (Fig. 32.). The hybrid is slightly superior at the performance is excellent and similar to the related all T-300compression. Premature failure modes are not encountered and Triaxial weaves  $\pm \phi^{\circ}/90^{\circ}$ , Kevlar in the 90° direction, in X XV.

ŧ

į

19 · · •

higher values of



# ORIGINAL PAGE IS OF POOR QUALITY

Figure 64. Evaluations of Hybrids.-

compression. Performance is limited by the low compressive strength of Kevlar. Not a configuration of much interest. Triaxial weaves  $\pi \phi^{*}/90^{\circ}$ , T-300 in the 90° direction, in .1VΞ



Figure 65. Evaluations of Hybrids.-

Envelope curves drawn to the individual curves of Figures 46 and 63 and calculated for all Kevlar show that the hybrids are some-Overall evaluations of  $z\phi^{\circ}/90^{\circ}$  triaxial weaves in compression. The all Kevlar is what below the all T-300 reinforcements. inappropriate for compressive loadings. . TIVX

•

.

.

. . . . . .

.





Here the envelopes to curves of Figures 47 and 61 and calculated for all Kevlar are further below the all T-300 curves than for  $+\phi^{+}/90^{\circ}$  configurations. Again all Kevlar is not appropriate for Overall evaluations of  $0^{\circ}/\pm\phi^{\circ}$  triaxial weaves in compression. compression. XVIII.

ORIGINAL PAGE IS



•

----




Figure 69. Evaluations of Hybrids.-

- Use of indicator numbers to assess potentials for performance in compression. . LYN
- can not provide shear stiffness/density ratios competitive with the aluminum alloy, for low stiffness requirements it offers promise of substantial weight savings. (a) Simple plain weaves. While the plain weave T-300 hybrid

,

• • • •

- -

•

· · · · ·





- Use of indicator numbers to assess potentials for performance in compression. . LIXE
- These hybrids can provide shear stiffness/density ratios equal to or greater than the aluminum alloy with potential (b) Triaxial  $\langle \psi \rangle / 90^\circ$  weaves, Kevlar in the  $90^\circ$  direction. weight savings of over 60%.



Figure 71. Evaluations of Hybrids.-

- Use of indicator numbers to assess potentials for performance in compression. . IIIVE
- (c) Triaxial  $0^{-1/3}\phi^{+}$  weaves, T-300 in the  $0^{3}$  direction. These φ /90° configuraaluminum alloy with comparable shear stiffness/density tion, can provide significant weight savings over the hybrids, while less effective than the ratios.

•





Figure 72. Evaluations of Hybrids.-

- Use of indicator numbers to assess potentials for performance in compression. . VIXX
- (d) Triaxial  $\pm \phi^*/0^*$  weaves, T-300 in the 90° direction. As is to be expected because of the low compressive strength of Kevlar, these hybrids are not competitive with the cor-

responding  $\pm \phi^{\circ}/90^{\circ}$  Kevlar in the 90° direction hybrids. Even so they have the potential to outperform the aluminum alloy.





Figure 73. Evaluations of Hyhrids.-

- Use of indicator numbers to assess potentials for performance in compression. NYY.
- As in the case of the  $\pi\phi^2/90^\circ$  hybrids having T-300 in the  $90^\circ$ (e) Triaxial 0'/90' weaves, Kevlar in the 0' direction.

direction, the compressive strength of the  $0^{\circ}$  Kevlar limits potential to outperform the aluminum alloy by a substantial the performance of these hybrids, though they have the margin in both shear stiffness/density potential and weight.

1**8** - 14 - 1

-

: .





ວ? ເກ compression. A 16 2/3% increase in ITT reinforcement TTT produces to i% loss in  $\Gamma_{
m y}^{*}$  at shear stiffnesses up to that comparable to the Use of indicator numbers to assess potentials for performance in For higher values the losses increase. . Yolla munumla XXVI.



2 plies



3 plies

Figure 75. Bumpy Laminate Cross-Sectional Concept for Thru the Thickness Strength.

# ORIGINAL PAGE IS OF POOR QUALITY





.....



Bottom View

Figure 78. Revised (Mark II) Bumpy Fabric Stacked the Auxiliary Warps Two High, as Shown Here. Whether this is adequate to provide appreciable thru the thickness reinforcement is yet to be determined.

















Figure 79. Advanced Bumpy Fabric Design Provides Nominally High Bumps, But as Drawn Relatively Low Volume Fraction Reinforcement . As in the preceding design, end volume fractions and performance are yet to be determined.

.



ORIGINAL PAGE IS OF POOR QUALITY



Stitchbase Weaves the Hole Spacings Are 2.3 and 4.6 Other spacings are possible with different weave Figure 80. In These Example Yarn diameters. designs.



1

i

Figure 81. As Shown Here the Auxiliary Warps Have Relatively Long Floats. Alternatively, they could be woven to be tied in every second, fourth or other multiples of two fill yarns.

ORIGINAL PAGE IS OF POOR QUALITY



Figure 82. Nesting of Bulbous Blade Auxiliary Warps Atop Substrate Weave Fabric Constructions Is Different from that of Auxiliaries on Plain Weave Fabrics. The high Poisson's ratio of the Substrate Weave will permit some control of the width dimension by tensioning the fabrics. Truly compact nested configurations should be achievable.



Figure 83. The Cross Section at the Bottom of the Figure Shows a Two Layer Construction. Up to four layers should be possible without difficulty.

. :

ORIGINAL PAGE IS OF POOR QUALITY

. . . . .



Figure 84. The Perfect Weave with Three-Way Symmetry, of Minor Interest for Composite Reinforcement Because of Short Float Lengths (1-up, 1-down in all three directions). Finely woven, however, it may have application in areas of stress concentration.





Figure 85. Losses in Properties in Tension Calculated by NDPROP for Biaxial Weaves Compared to 0°/90° Unidirectional Tape Laminates. Losses in  $E_x$  are in part compensated by increases in other elastic properties such as  $E_z$  and  $G_{xz}$ .

## <u>APPENDIX A</u>

í.

ANALYTICAL MODELS FOR THE CALCULATION OF WOVEN FABRIC PROPERTIES

,

.

## LIST OF SYMBOLS

# As used in Appendix A

| А               | area                                                         |
|-----------------|--------------------------------------------------------------|
| A <sub>ii</sub> | matrix relating in-plane stresses to strains                 |
| B <sub>ij</sub> | matrix relating in-plane stresses to curvatures              |
| C <sub>ij</sub> | stiffness matrix                                             |
| D <sub>ij</sub> | matrix relating moments to curvatures                        |
| E               | Young's modulus                                              |
| G               | shear modulus                                                |
| h               | thickness                                                    |
| L               | thread count                                                 |
| S <sub>ii</sub> | compliance matrix                                            |
| ΔT              | temperature difference from stress free temperature          |
| U               | strain energy                                                |
| Ũ <sub>c</sub>  | complementary energy                                         |
| v <sub>f</sub>  | fiber volume fraction                                        |
| ° <sub>i</sub>  | thermal expansion coefficient vector                         |
| $\beta_{i}$     | thermal curvature coefficient vector                         |
| Γ <sub>i</sub>  | vector relating strains due to applied temperature gradients |
|                 | to stresses                                                  |
| Δ <sub>i</sub>  | vector relating curvatures due to applied temperature        |
|                 | gradients to stresses                                        |
| εi              | strain vector                                                |
| κ               | curvature vector                                             |
| $\sigma_{i}$    | stress vector                                                |
| ν               | Poisson's ratio                                              |

# SUBSCRIPTS

| L | longitudinal (fiber) direction  |
|---|---------------------------------|
| Т | transverse (to fiber) direction |
| X | in-plane axial direction        |
| Y | in-plane transverse direction   |
| Z | thru the thickness direction    |

ł

## APPENDIX A

# ANALYTICAL MODELS FOR THE CALCULATION OF WOVEN FABRIC PROPERTIES

The behavior of woven fabrics is dependent on several geometrical as well as material parameters. The analytical treatment of the woven fabric needs to be three-dimensional to account properly for the complicated reinforcement geometry of anisotropic fiber bundles. The mechanics of fabric reinforced composites are not as well defined as compared to laminated composite plates and hence our approach to the development of an analysis was to obtain bounds on the effective fabric properties based on energy principles. Various fabric models were considered and resulting calculations were compared with the results of finite element analyses in order to assess the validity of the different models. This appendix contains a brief description of each of the approaches and the results obtained.

### LAYERED-PLATE FABRIC MODEL

The first step in analyzing the fabric was to define the geometry of a representative volume element. In this approach it was assumed that the yarn cross-sections remained circular. The overall structural behavior of the fabric was determined from the weave characteristics and properties computed for the representative volume element. The representative volume element of a five harness satin woven fabric is shown in figure A-1. The figure also shows several cross sections within the representative element. It can be observed from the figure that the weave is of the "over 4 under 1" pattern typical of the five harness satin weave. The cross-sections are similar to each other except for the relative position of the cross-over yarn.

A typical cross-section of the weave is shown in figure A-2. The cross-section of another weave would be similar except for the relative dimensions of the straight and cross-over yarns. The cross-section can be divided into several sub-layers each containing axial, transverse and oriented fiber bundles. The overall weave properties were computed by

treating each sub-layer as a portion of a laminated plate and integrating through the ply thickness.

The elastic properties of the woven fabric were determined by this approach using three different assumptions. First, it was assumed that each of the sub-layers had a linear strain field thru the thickness and a constant strain field along its length yielding an upper bound on stiffnesses. The second assumption led to a reduced upper bound based on a constant strain field along the length and a state of plane stress for each sublayer. The third assumption yielded a lower bound on the fabric stiffnesses by assuming a linear stress field thru the thickness and a constant stress field along the length for each sub-layer.Equations for the elastic properties under three different assumptions are presented in the following paragraphs.

## Upper Bound Approximation

We assume that the element shown in figure A-3 is subjected to no surface tractions and that the assumed displacement fields hold everywhere inside the element. If the constitutive relations for the constituents are of the following form (in contracted notation)

1

$$\sigma_{i} = C_{ij} \epsilon_{j} + \gamma_{i} \Delta T$$
 (1)

then noting that  $\epsilon_{33} = \epsilon_{13} = \epsilon_{23} = 0$  everywhere, and summing the strain energies in all the constituents for the assumed displacement field, one obtains

$$U = \frac{A}{2} \left[ A_{ij}^{1} \ \bar{\epsilon}_{i} \ \bar{\epsilon}_{j} + 2B_{ij}^{1} \ \bar{\epsilon}_{i} \ \bar{\kappa}_{j} + D_{ij}^{1} \ \bar{\kappa}_{i} \ \bar{\kappa}_{j} \right]$$

$$+ \left[ \Gamma_{i}^{1} \ \bar{\epsilon}_{i} + \Delta_{i}^{1} \ \bar{\kappa}_{i} \right] \Delta T \right]$$

$$(2)$$

where repeated indices indicate summation over indices 1, 2 and 6. The upper bound stiffness matrices  $A^1$ ,  $B^1$  and  $D^1$  are calculated in the following manner.

$$\begin{cases} A_{ij}^{1}, B_{ij}^{1}, D_{ij}^{1} \end{bmatrix} = \frac{1}{A} \int_{A} \int_{-h/2}^{h/2} C_{ij} (1, z, z^{2}) dz$$

$$= \sum_{\ell=1}^{L} \left[ (P^{\ell}, Q^{\ell}, R^{\ell}) \frac{M(\ell)}{m=1} C_{ij}^{\ell m} a^{\ell m} \right]$$

$$\begin{cases} \Gamma_{i}^{1}, \Delta_{i}^{1} \end{bmatrix} = \frac{1}{A} \int_{A} \int_{-h/2}^{h/2} \gamma_{i} (1, z) dz$$

$$= \sum_{\ell=1}^{L} \left[ (P^{L}, Q^{L}) \frac{M(\ell)}{m=1} \gamma_{i}^{\ell m} a^{\ell m} \right]$$

$$(3b)$$

In equations (3) the superscripts lm indicate material, m, in layer, l, and M(l) is the number of materials in layer l. L is the total number of layers. Further

$$P^{\ell} = h_{1\ell} - h_{2\ell}$$

$$Q^{\ell} = 1/2 \ (h_{1\ell}^{2} - h_{2\ell}^{2})$$

$$R^{\ell} = 1/3 \ (h_{1\ell}^{3} - h_{2\ell}^{3})$$
(4)

 $h_{1\ell}$ ,  $h_{2\ell}$  being the z-coordinates of top and bottom surfaces of layer  $\ell$ .  $A_{ij}^{l}$ ,  $B_{ij}^{l}$ ,  $D_{ij}^{l}$ ,  $\Gamma_{i}^{l}$  and  $\Delta_{i}^{l}$  yield approximate values of  $A_{ij}^{*}$ ,  $B_{ij}^{*}$ ,  $D_{ij}^{*}$ ,  $\Gamma_{i}^{*}$  and  $\Delta_{i}^{*}$ , respectively. Moreover, the diagonal terms of the matrices  $A_{ij}^{l}$  and  $D_{ij}^{l}$  are upper bounds on the corresponding effective properties. Approximate expansions for average thermal expansions and curvatures can be obtained as

$$\begin{bmatrix} \alpha_{i}^{1} \\ \beta_{i}^{1} \end{bmatrix} = \begin{bmatrix} A^{1} & B^{1} \\ B^{1} & D^{1} \end{bmatrix} = \begin{bmatrix} \Gamma_{i}^{1} \\ \Delta_{i}^{1} \end{bmatrix}$$
(5)

## Reduced Upper Bound Approximation

An assumption which is used in laminated plate theory is that the stress in the z direction is equal to zero. In the problem under consideration, we may make the same assumption and obtain approximate expressions  $A_{ij}^2$ ,  $B_{ij}^2$ ,  $D_{ij}^2$  for the effective properties by using reduced stiffnesses  $C_{ij}^{lm} = C_{ij}^{lm} - C_{i3}^{lm} C_{33}^{lm}$  in place of  $C_{ij}^{lm}$  in (3a). The expressions for the diagonal terms of  $A^2$  and  $D^2$  matrices are not strictly upper bounds on the corresponding effective properties and, therefore, we have introduced the term reduced upper bound.

## Lower Bound Aproximation

In this formulation, instead of choosing an approximate displacement field, we assume the following stress field in the representative area element

$$\sigma_{i}^{\ell} = \sigma_{i}^{\ell 0} + z \sigma_{i}^{\ell 1}$$
,  $\ell = 1, 2, ... L$  (6a)  
 $i = 1, 2, 6$ 

and  $\sigma_3^{\ell} = \sigma_4^{\ell} = \sigma_5^{\ell} = 0$  (or,  $\sigma_{33}^{\ell} = \sigma_{13}^{\ell} = \sigma_{23}^{\ell} = 0$ ) (6b)

where  $\sigma_i^{\ell}$  = the stress component i in the  $\ell^{\text{th}}$  layer each of which is independent of the x and y coordinates.

The complementary energy for the assumed stress field representative area element can be expressed as

$$U_{c} = \sum_{\ell=1}^{L} 1/2 \left[ F_{ij}^{\ell} \sigma_{i}^{\ell \circ} \sigma_{j}^{\ell \circ} + G_{ij}^{\ell} \cdot \left( \sigma_{i}^{\ell \circ} \sigma_{j}^{\ell 1} + \sigma_{i}^{\ell 1} \sigma_{j}^{\ell \circ} \right) + H_{ij}^{\ell} \sigma_{i}^{\ell 1} \sigma_{j}^{\ell 1} \right] + \left( e_{i}^{\ell} \sigma_{i}^{\ell \circ} + f_{i}^{\ell} \sigma_{i}^{\ell 1} \right) \Delta T$$

$$- \left\{ P^{\ell} \sigma_{i}^{\ell \circ} \bar{\epsilon}_{i} + Q^{\ell} \left( \sigma_{i}^{\ell \circ} \bar{\kappa}_{i} + \sigma_{i}^{\ell 1} \bar{\epsilon}_{i} \right) + R^{\ell} \sigma_{i}^{\ell 1} \bar{\kappa}_{i} \right\}$$

$$(7)$$

where the repreated indices i, j indicate summation over 1, 2 and 6 and,

$$\left( F_{ij}^{\ell}, G_{ij}^{\ell}, H_{ij}^{\ell} \right) - \sum_{m=1}^{M(\ell)} \int_{A}^{h/2} \int_{-h/2}^{h/2} S_{ij}^{\ell m} (1, z, z^{2}) dz dA$$

$$- A (P^{\ell}, Q^{\ell}, R^{\ell}) \sum_{m=1}^{M(\ell)} a^{\ell m}$$

$$= a^{\ell} f_{i}^{\ell} - \sum_{m=1}^{\Sigma} \int_{a} \int_{-h/2} \sigma_{i}^{\ell m} (1, z) dz dA$$

$$- A (P^{\ell}, Q^{\ell}) \sum_{m=1}^{\Sigma} \sigma_{i}^{\ell m} a^{\ell m}$$

In equation (8) A is the area of the element  $P^{\ell}$ ,  $Q^{\ell}$ ,  $R^{\ell}$  and  $a^{\ell m}$  are defined for approximation 1, and  $S_{ij}^{\ell m}$ ,  $\alpha_i^{\ell m}$  are the complicances and thermal expansion coefficients for material m in layer  $\ell$ . Minimization of U<sub>c</sub> with respect to the unknows  $\sigma_i^{\ell 0}$ ,  $\sigma_i^{\ell 1}$  (i = 1,2,6 and  $\ell = 1, \ldots$ L) yields

(8)

$$\sigma_{i}^{\ell o} = F_{ij}^{\prime \ell} \left[ -e_{j}^{\ell} \Delta T + P^{\ell} \tilde{\epsilon}_{j} + Q^{\ell} \tilde{\kappa}_{j} \right] + G_{ij}^{\prime \ell} \left[ -f_{j}^{\ell} \Delta T + Q^{\ell} \tilde{\epsilon}_{j} + R^{\ell} \tilde{\kappa}_{j} \right]$$
(9)  
$$\sigma_{i}^{\ell 1} = G_{ij}^{\prime \ell} \left[ -e_{j}^{\ell} \Delta T + P^{\ell} \tilde{\epsilon}_{j} + Q^{\ell} \tilde{\kappa}_{j} \right] + H_{ij}^{\prime \ell} \left[ -f_{j}^{\ell} \Delta T + Q^{\ell} \tilde{\epsilon}_{j} + R^{\ell} \tilde{\kappa}_{j} \right]$$

where

$$\begin{bmatrix} \mathbf{F}^{\prime} \, \boldsymbol{\ell} & \mathbf{G}^{\prime} \, \boldsymbol{\ell} \\ \mathbf{G}^{\prime} \, \boldsymbol{\ell} & \mathbf{H}^{\prime} \, \boldsymbol{\ell} \end{bmatrix} - \begin{bmatrix} \mathbf{F}^{\boldsymbol{\ell}} & \mathbf{G}^{\boldsymbol{\ell}} \\ \mathbf{G}^{\boldsymbol{\ell}} & \mathbf{H}^{\boldsymbol{\ell}} \end{bmatrix}^{-1}$$

Substitution of equation (9) in (7) or evaluation of  $\bar{N}_i$  and  $\bar{M}_i$  with the help of (6a) and (9) yields the following approximate expressions for the effective properties.

$$A_{ij}^{3} = \sum_{\ell=1}^{L} \left[ F_{ij}^{\prime \ell} (P^{\ell})^{2} + 2 G_{ij}^{\prime \ell} P^{\ell} Q^{\ell} + H_{ij}^{\prime \ell} (Q^{\ell})^{2} \right]$$

$$B_{ij}^{3} = \sum_{\ell=1}^{L} \left[ F_{ij}^{\prime \ell} P^{\ell} Q^{\ell} + G_{ij}^{\prime \ell} \left\{ P^{\ell} R^{\ell} + (Q^{\ell})^{2} \right\} + H_{ij}^{\prime \ell} Q^{\ell} R^{\ell} \right]$$

$$D_{ij}^{3} = \sum_{\ell=1}^{L} \left[ F_{ij}^{\prime \ell} (Q^{\ell})^{2} + 2 G_{ij}^{\prime \ell} Q^{\ell} R^{\ell} + H_{ij}^{\prime \ell} (R^{\ell})^{2} \right]$$

$$(10)$$

$$F_{j}^{3} = \sum_{\ell=1}^{L} P^{\ell} \left[ F_{ij}^{\prime \ell} e_{j}^{\ell} + G_{ij}^{\prime \ell} f_{i}^{\ell} \right] + Q^{\ell} \left[ G_{ij}^{\prime \ell} e_{j}^{\ell} + H_{ij}^{\prime \ell} f_{i}^{2} \right]$$

$$\Delta_{j}^{3} = -\sum_{\ell=1}^{L} Q^{\ell} \left[ F_{ij}^{\prime \ell} e_{j}^{\ell} + G_{ij}^{\prime \ell} f_{i}^{\ell} \right] + R^{\ell} \left[ G_{ij}^{\prime \ell} e_{j}^{\ell} + H_{ij}^{\prime \ell} f_{i}^{2} \right]$$

The appoximate effective thermal expansion coefficients and curvatures are then expressed as

$$\begin{bmatrix} \alpha_{i}^{3} \\ \beta_{i}^{3} \end{bmatrix} = \begin{bmatrix} A^{3} & B^{3} \\ B^{3} & D^{3} \end{bmatrix}^{-1} \begin{bmatrix} \Gamma_{i}^{3} \\ \Delta_{i}^{3} \end{bmatrix}$$
(11)

In this formulation, the diagonal terms of the matrices  $A^3$  and  $D^3$  yield lower bounds for the diagonal terms of  $A^*$ ,  $D^*$  respectively.

The yarn properties were obtained from the constituent fiber and matrix properties and the fiber volume fraction using UNI, a MSC fiber bundle property prediction code based on the composite cylinders assemblage. The T300/Epoxy properties used for the analyses are listed in table A-1.

The next step in this approach was the determination of amounts of yarn in the different orientations: axial, transverse and cross-over. This is illustrated in figure A-4. It can be observed that the angle of cross-over can be determined in terms of the fabric ply thickness and the distance between two consecutive yarns. The calculated volume fractions were then used along with the three different assumptions to yield bounds on the overall elastic properties of the woven fabric.

The results obtained by using the layered-plate fabric model for plain weave and 8 harness satin fabrics are shown in figure A-5. The results

indicated very little difference in the in-plane elastic modulus between the plain weave and the 8 harness satin fabric based on both the upper and lower bounds. Also, the in-plane shear moduli of the fabrics were almost identical to the shear moduli of the unidirectional fiber bundles. The bounds were observed to be far apart so that it was not possible to ascertain the validity of the results. An improved lower bound was then obtained by subdividing the repeating element into layers parallel to the thru the thickness direction. This resulted in the fabric consisting of layers of 0/90 and crossover material for 3 and higher harness satin fabrics. Utilizing the geometry of the yarns as shown in figure A-2, appropriate volume fractions were calculated for the 0/90 material and segments of the crossover. The fabric in-plane modulus was then obtained through a lower bound formulation by considering the stiffnesses and the volume fractions of the sub-layers. This resulted in higher values as compared to the one obtained earlier because in this approach the oriented yarns only affect the stiffnesses of the crossover region. Thus, although the lower bound results for the plain weave (two harness satin) fabric were identical for both approaches, the 0/90 material without any crossover material improved the lower bound stiffnesses for higher harness number fabrics.

Another disadvantage with the layered-plate model was that the maximum prism volume fractions of the yarns was about 55-60%, which meant that the fabric contained large amounts of interstitial matrix. Examining photomicrographs of T300/5208 fabrics indicated that in actuality, the volume of interstitial matrix pockets was negligibly small and that the yarn flattened and changed shape along its length. Since the layered-plate fabric model did not yield very satisfactory results it was considered necessary to develop a geometrically compatible model. The following paragraphs contain a description of the approach and results obtained for the geometrically compatible model.

#### "NDPROP" MODEL

The basic assumption used in constructing the geometric model was that the yarn cross-sectional area remained unchanged while taking on various shapes along its length. Even though the shape of the cross-sections varied

continuously, it was assumed that the transition sequence within one repeating element could be represented by a few discrete shapes.

Based on these considerations, representative area elements were identified for commonly used weaves. These are shown in figure A-6. It can be observed from the figure that the 8 harness satin weave element is of the "over 7 under 1" type and consists of 4 distinct shapes that the yarn must take along its length within its repeating length of 8L. Here "L" refers to the yarn count, i.e., the average distance between successive yarns. It was assumed that the actual distance between any two successive yarns could be different from L, in order to accommodate changes in length, while keeping the overall length of the representative element unchanged. The representative elements of the other weaves were defined in a similar manner. For 3 and higher harness satin fabrics the number of distinct shapes of the yarn cross-section were kept unchanged. The lengths in which the transitions occurred were selected according to the repeating element geometry. For the plain weave fabric, another intermediate cross-section, a rectangle, was introduced to make the transition more gradual and realistic.

The sequence of transition within the representative area element for two typical fabric constructions is shown in figure A-7. The sequences for the higher harness satins can be readily extrapolated from that of the 3 harness satin fabric.

i

•

The next step in the procedure consisted of determining the required dimensions to define the repeating element completely. The weave parameters which were utilized to do this were: yarn cross-sectional area, fabric ply thickness and yarn count. In addition to these, it was necessary to assume a few other dimensions in order to make the geometry determinate. However, these assumptions were made in non-critical dimensions so that the end results were not affected significantly. Once the leading dimensions of the cross-sections were determined, the yarn cross-over angle, prism volume fractions of the bundle segments and the volume of the interstitial matrix pockets could be calculated. The complete transition sequences for 3 harness and plain weave fabrics are shown in figure A-8.

In order to compute the properties of the yarn from the properties of the unidirectional fiber bundle, each cross-section was broken down into several segments by joining each vertex to the centroid of the crosssection. Each fiber bundle was assumed to exist from a segment of one

cross-section to the corresponding segment of an adjoining cross-section. The procedure used to determine volume fractions and direction numbers is outlined in figure A-9. In the same manner the entire yarn could be broken down into various segments with their corresponding direction numbers and volume fractions. The volume fractions were normalized with respect to the repeating element volume and then multiplied by the total prism volume fraction to account for the interstitial matrix pockets.

The resulting set of volume fractions and direction numbers along with the unidirectional fiber bundle properties were fed into "NDPROP" which is an MSC computer code used to predict properties and strengths for a composite with multidirectional reinforcement. The upper bound properties were obtained by volume averaging globally transformed stiffnesses of the various bundle segments, corresponding to the constant strain assumption. The lower bound prediction of stiffnesses were obtained by volume averaging the transformed compliances of the bundle segments, the assumption being that the stresses in the longitudinal and transverse yarns are constant.

The upper and lower bound predictions of Young's moduli are shown for the plain weave and 8 harness satin fabrics in figures A-10 through A-13. The in-plane elastic modulus bounds are far apart even in this approach. The lower bound predictions for the two different fabric types are not significantly different for both in-plane and thru the thickness moduli. However according to the upper bound prediction, an increase in the inplane modulus is accompanied by a decrease in the thru the thickness modulus for the 8 harness satin as compared to the plain weave. The elastic moduli can be expected to approach the 0/90 laminate moduli as the harness number increases.

The shear modulus predictions for the plain weave and 8 harness are shown in figures A-14 and A-15. The in-plane shear modulus predictions agree fairly well with the layered-plate fabric model predictions. For the plain weave, the transverse shear modulus is significantly higher than the in-plane shear modulus. The differences between in-plane and transverse shear moduli are much smaller for the 8 harness satin fabric.

The differences in the properties between the plain weave and 8 harness fabrics can be explained in general by the differences in amounts of thru the thickness reinforcement. The 8 harness satin properties are very similar to the properties of a cross-plied laminate, as Table 1 in the main body of the report indicates. Hence, the 8 and higher harness satin fabrics would have the best in-plane properties and the plain weave fabric would have the best thru the thickness properties.

Although this approach led to reasonable trends in the results, the far apart bounds in the in-plane elastic moduli were a cause for concern. In order to determine which of the bounds gave a better representation of the fabric behavior a finite element analysis was conducted. For this analysis the plain weave fabric was utilized due to modeling ease.

## FINITE ELEMENT ANALYSIS

The finite element model was a symmetric section of the plain weave repeating element of the geometrically compatible model. Linear threedimensional isoparametric finite elements were used in the analysis. Since the cross-section of the yarns varied within the repeating element, it was necessary to use solids with fairly complex geometries. Further, the interstitial matrix pockets were also modeled to prevent inaccuracies in the results due to the presence of voids in the model. The nature of the model and the applied boundary conditions resulted in stiffness matrices of very large bandwidth. Therefore, the finite model was made somewhat coarse (101 modes and 107 elements) for the sake of modeling ease and minimizing computer run times. The finite element model is shown schematically in figure A-16 along with the applied boundary conditions. The complete finite element model with all the element boundaries is shown in figure A-17.

The finite element results have been compared with the upper and lower bounds of the NDPROP model in figures A-18 and A-19. The analyses were conducted for four different volume fractions. Both the in-plane and thru the thickness moduli exhibited a consistent trend as can be observed from figures A-18 and A-19 respectively. The results appear to be reasonable and it can be observed that the finite element predictions are not significantly closer to either of the bounds. This indicates that neither the constant stress nor constant strain assumptions are good representations of fabric behavior. One of the reasons for the low in-plane elastic modulus obtained through the finite element analysis appeared to be the particular model geometry chosen with the high crossover angle of 53°. In order to study the

effects of the crossover angle and thereby the relative amounts of horizontal and oriented yarn segments, two dimensional finite element analyses were conducted. The repeating element cross-sections shown in figure A-6 were modeled for plane strain analyses. The modulus from the 2-D analysis was about 5% lower than that from the 3-D analysis for the original geometry (crossover angle = 53°). The model was therefore verified to be accurate enough to compare effects of geometry changes. The plain weave moduli were observed to be very strong functions of the crossover angle. For example, the modulus for the T300/Epoxy Plain Weave fabric ( $v_f = 0.60$ ) was calculated to be 4.10 Msi for a crossover angle of 53° and 6.96 Msi for an angle of 15°.

The 2-D plane strain analyses were also done for higher harness fabrics. The comparisons of the finite element results with those from the various approaches are presented at the end of this section.

Since the NDPROP and Layered-Plate model bounds were quite far apart, attempts were made to develop improved bounds based on a simplified fabric model. The following paragraphs described the analytical methodology and the results of this approach.

#### SIMPLIFIED FABRIC MODEL

The simplified fabric model consisted of four oriented yarn bundles with none of the bundles containing any straight horizontal segments. All four bundles were inclined at the same angle with respect to the thru the thickness direction and balanced in the in-plane direction, see figure A-20. An improved lower bound approach was formulated for this model based on the assumption that the transverse stresses in the bundles were the same as the state of stress in the interstitial matrix. Contributions of the longitudinal and transverse strands and the matrix material to the complementary strain energy were evaluated in terms of the applied in-plane stress in order to arrive at an improved lower bound for the in-plane elastic modulus. The upper bound calculations for this model were obtained in the same manner as for the NDPROP model.

The results of this approach are shown in figure A-21 for plain weave fabrics for different amounts of reinforcement. The orientation angle of the yarns was obtained from the fabric yarn count and ply thickness values

used for the other models. The finite element results could not be compared to these results on the same basis since the geometries of the two models were different. The simplified model is, in fact, spatially compatible only up to a total yarn prism volume fraction of 75%. Accordingly, the results shown in figure A-21 are for a 75% prism volume fraction and a bundle volume fraction of 60%. The bounds predicted by this approach are indeed much closer together.

The same model was also utilized to calculate thru the thickness moduli. The results are shown in figure A-22. It can be observed from this figure, that the predicted values are in good agreement with earlier approaches and the bounds are quite close.

#### CONCLUSIONS FROM MODELING EFFORTS

The comparison between the results of the various approaches are shown in figure A-23. Also shown in figure A-23 are the results of the work done in this area by Ishikawa and Chou, reference A-1. A review of their work indicated that three different models were used by them for the prediction of fabric elastic properties. The first model, termed the mosaic model, assumed that the fabric composite could be modeled as a assemblage of pieces of cross-ply laminates. The effect of the inclined transition region of the fabric was neglected in the mosaic model. The fiber undulation model included this effect and hence was thought to be more realistic for plain weave fabrics. The third model was the bridging model which employed a twodimensional repeating element of the fabric to account for the load transferring mechanisms in interlaced regions which are separate from one another, as in higher harness satin fabrics. The results of each of the three models are shown in Figure A-23.

It was observed from finite element analyses that the results approached the Upper Bound for low crossover angles. For fabrics of high quality (low interstitial matrix volume and low cross-over angles) the upper bound approaches will thus be appropriate. The "NDPROP" model is a geometrically compatible model and is a realistic three-dimensional representation of a woven fabric. Further, the "NDPROP" Upper Bound predicts trends that are reasonable and provides a complete set of fabric properties.

Therefore, the "NDPROP" Upper Bound was selected from among the various approaches to calculate woven fabric properties.

## REFERENCES

A-1. Ishikawa, T. and Chou, T. W., "Stiffness and Strength Behavior of Woven Fabric Composites," Journal of Materials Science, 17, 1982. Table A-1. Unidirectional T300/Epoxy Properties used for prediction of woven

| Property              | $v_f = 0.2$ | $v_{f} = 0.3$ | $v_{f} = 0.4$ | v <sub>f</sub> = 0.5 | $v_{f} = 0.6$ |
|-----------------------|-------------|---------------|---------------|----------------------|---------------|
| E <sub>L</sub> , Msi  | 7.10        | 10.4          | 13.7          | 17.0                 | 20.3          |
| E <sub>T</sub> , Msi  | 0.707       | 0.820         | 0.958         | 1.126                | . 1.334       |
| G <sub>LT</sub> , Msi | 0.275       | 0.332         | 0.404         | 0.499                | 0.630         |
| <sup>v</sup> LT       | 0.3         | 0.3           | 0.3           | 0.3                  | 0° 3          |
| VT Z                  | 0.394       | 0.381         | 0.367         | 0.355                | 0.347         |

Fabric Properties





•

Ę

-

÷

.

.

•






Figure A-3. Representative Area Element RAE Containing Several Layers for Layered-Plate Fabric Model



$$Y_{1} = T\left(\frac{1}{2\cos\phi} - \frac{1}{4}\right); \quad X_{1} = T\left(\frac{\frac{1}{\cos\phi} - \frac{1}{2}}{2\tan\phi} - \frac{1}{4}\tan\phi\right); \quad X_{2} = X_{1}\cos\phi$$

$$L = \frac{T}{\tan\phi} \left( \frac{1}{\cos\phi} - \frac{1}{2} \right)$$

 $\phi$  can be determined from above equation given L and T

Volume of cross-over material:  $(2 X_2) (\frac{T}{2})$  (L) (2N) Volume of material in RVE: T (NL) (NL) where N = Harness number of weave

Volume fraction of cross-over material:  $v_{\phi} = \left(\frac{\beta}{2} - \frac{\tan\phi}{2}\right) \cos \phi/N\beta$  $\beta = \frac{\frac{1}{\cos\phi} - \frac{1}{2}}{\frac{1}{\tan\phi}}$ 

where

Figure A-4. Calculation of Volume Fraction of Cross-Over Material in Representative Volume Element, Layered-Plate Fabric Model.



Figure A-5. Woven Fabric In-Plane Elastic Properties versus Fiber Content, Layered-Plate Fabric Model.

i







Yarn Cross-Sections at Selected Locations for the Representative Area Element of (a) 3-Harness Satin and (b) Plain Weave Woven Fabrics, NDPROP Model. Figure A-7.

NOTE: Indicated Cross-Sections are not drawn to scale.



FigureA-8. Transition sequences of (a) Plain Weave and (b) 3 Harness Satin Fabrics, NDPROP Model.

177





... h=2

| Volume Fraction | $(BG_1C + QG_2R)/2A$ | CG1D/2A                           | $(DG_1E + RG_2S)/2A$ | $(EG_1F + SG_2^T)/2A$           | $(FG_1A + TG_2P)/2A$                | $(AG_1B + PG_2Q)/2A$ |  |
|-----------------|----------------------|-----------------------------------|----------------------|---------------------------------|-------------------------------------|----------------------|--|
| Direction       | $BG_1C - QG_2R$      | cc <sub>1</sub> D RC <sub>2</sub> | DG1E RG2S            | $EG_1F \longrightarrow SG_2'I'$ | FG <sub>1</sub> A TC <sub>2</sub> P | $AG_1B - PC_2Q$      |  |
|                 | Bundle 1:            | Bundle 2:                         | Bundle 3:            | Bundle 4:                       | Bundle 5:                           | Bundle 6:            |  |

Where A = cross-sectional area of yarn and h = one-half the fabric ply thickness. Figure A-9. Approach for Calculating Direction Numbers and Volume Fractions for Various Segments within a Typical Yarn Section, NDPROP Model.

1

.

•

÷ . . . .



.

Figure A-10.Predicted Bounds for Plain Weave Fabric In-Plane Elastic Moduli, NDPROP Model.

·.' \_\_



Figure A-11. Predicted Bounds for Plain Weave Fabric Through-the-thickness Elastic Moduli, NDPROP Model.



Figure A-12. Predicted Bounds for 8 Harness Satin Fabric In-Plane Elastic Moduli, NDPROP Model.

.



Figure A-13. Predicted Bounds for 8 Harness Satin Fabric Through-the-thickness Elastic Moduli, NDPROP Model.



Figure A-14. Predicted Bounds for Plain Weave Fabric Shear Moduli, NDPROP Model.







Boundary Conditions:

Surface X = 0, UX = 0Surface Y = 0, UY = 0Surface X = -L, UX uniform Surface Y = L, UY uniform At (0,0,0), UZ = 0

Figure A-16. Plain Weave Fabric Finite Element Model and Applied Boundary Conditions.



Figure A-17. Plain Weave Fabric Finite Element Model

;

.



Figure A-18. Comparison of Plain Weave Fabric In-Plane Elastic Moduli Bounds with Finite Element Results, NDPROP Model.



Figure A-19. Comparison of Plain Weave Fabric Thru the Thickness Elastic Moduli Bounds with Finitee Element Results, NDPROP Model.

188

 $C \sim 2$ 



Figure A-20.Schematic Representation of Simplified Plain Weave Fabric Model



Figure A-21. Predicted Bounds for Plain Weave In-Plane Elastic Moduli, Simplified Model.



Figure A-22. Predicted Bounds for Plain Weave Thru the Thickness Elastic Moduli, Simplified Model.





In-Plane Elastic Modulus, Msi

## APPENDIX B

# THE AVERAGE STRESS MODEL FOR THE ANALYSIS OF STRENGTHS OF WOVEN FABRIC COMPOSITES

.

.

÷

## LIST OF SYMBOLS

(As used in Appendix B)

| EL                | longitudinal Young's Modulus   |  |  |  |  |
|-------------------|--------------------------------|--|--|--|--|
| S <sub>iikl</sub> | compliance Matrix              |  |  |  |  |
| V                 | volume fraction                |  |  |  |  |
| ٤ <sub>ij</sub>   | strain tensor                  |  |  |  |  |
| σ <sub>ij</sub>   | stress tensor                  |  |  |  |  |
| σ <sub>f</sub>    | allowable fiber stress         |  |  |  |  |
| σm                | allowable matrix normal stress |  |  |  |  |
| τ <sub>m</sub>    | allowable matrix shear stress  |  |  |  |  |

### SUPERSCRIPTS

•

.

;

| f  | fiber                    |  |  |  |
|----|--------------------------|--|--|--|
| m  | matrix                   |  |  |  |
| *  | unidirectional composite |  |  |  |
| +  | tension                  |  |  |  |
| -  | compression              |  |  |  |
| tu | tensile ultimate         |  |  |  |
| cu | compressive ultimate     |  |  |  |
|    |                          |  |  |  |

#### APPENDIX B

## THE AVERAGE STRESS MODEL FOR THE ANALYSIS OF STRENGTHS OF WOVEN FABRIC COMPOSITES

An approach to evaluate the strengths of fabric composites was formulated utilizing the "NDPROP" Upper Bound model, described in Appendix A and the "Average Stress Model". This appendix contains a description of the "Average Stress Model" approach.

Utilizing the fabric geometrical parameters such as yarn count and ply thickness, total fiber content and fiber cross-sectional area within the yarns, the inputs of direction numbers and volume fractions of yarn bundle segments could be generated. The elastic properties of the fabric were determined using this input and the "NDPROP" code. The same input geometry was then used as the basis for the strength analysis.

The first step of the procedure involved the determination of stresses and strains in the various yarn bundle segments due to the applied stresses in the fabric composite. Conventional three-dimensional stress analysis was therefore utilized for this purpose.

Since each (warp or fill) yarn had been discretized into several bundles, it was believed that the failure analysis would be more realistic if it was done on a fiber and matrix level rather than on a yarn bundle level. Accordingly, the next step involved the determination of stresses within the constituent fiber and matrix for the different yarn bundle segments comprising the fabric composite. The "Average Stress Model" was utilized for this purpose. This model postulates that although the stresses in the fiber and matrix vary from point to point, the failure stress level depends on the magnitudes of the average stress states within the fiber and matrix. The formulation of the "Average Stress Model" and the associated equations are shown in Table B-1. It can be observed from the table that the matrix stresses can be represented as a function of the volume fraction and compliance matrices of the fiber, matrix and unidirectional composite. The inputs required for the stress analysis are comprised of the allowable fiber stresses,  $\sigma_{f}^{+}$  and  $\sigma_{f}^{-}$  and the allowable matrix stresses in tension, compression and shear, designated  $\sigma_{\rm m}^+$ ,  $\sigma_{\rm m}^-$  and  $\tau_{\rm m}^-$ , respectively.

195

The maximum stress failure criterion was used in the strength analysis. The matrix stresses were converted into principal stresses and maximum shear stresses. Critical ratios were computed for matrix failure (tension, compression and shear) and fiber failure (tension, compression). Matrix failure corresponds to the initiation of cracking in the matrix and may not be catastrophic in most cases. Fiber failure, on the other hand, involves actual fiber breakage. In most cases, the composite can continue to carry loads even after the occurence of matrix failures. Therefore, the strength analysis procedure was of the sequential failure type. If the first failure was a matrix failure, the matrix properties for the appropriate yarn bundle were reduced and the analysis was continued until fiber axial failure occured. In some cases, fiber failure may not occur. In such cases, the strain may suddenly increase due to repeated matrix tensile and/or shear failures. Thus, ultimate strength was characterized either by fiber axial failure or the sudden increase in strain levels.

One of the limitations of this strength approach is that accurate constituent input strengths are needed. The fiber tensile allowable may be conveniently calculated from the measured fiber bundle tensile strength,  $\sigma_{\rm I}^{\rm tu}$ , according to the following equation

$$\sigma_{f}^{+} = \frac{\sigma_{L}^{tu} E_{L}^{f}}{E_{T}^{*}}$$

(B.1)

The neat resin tensile, compressive and shear allowables, are not as readily available. The matrix tensile and shear allowables used in this program were obtained from reference B-1 and were actually measured for the 3501-6 matrix material. The properties for the various brittle epoxies compatible with graphite fibers such as 5208, 914 and 934 are expected to be very similar. The matrix compressive allowable strength was obtained from manufacturer's data sheets on various resins and is not very significant because it is high enough to prevent any matrix compressive failures.

The fiber compressive strength allowable presents more problems, however. In the present program, the compressive allowable was calculated from the following equation:

$$\sigma_{f} = \underline{\sigma_{L}^{cu} E_{L}^{f}}_{E_{L}^{*}}$$

(B.2)

where  $\sigma_L^{cu}$  is the measured bundle compressive strength. The above equation will yield reasonable results if the available compressive strength data are for volume fractions close to those observed in the fabrics whose strengths are to be calculated and if the fabrics are not comprised of excessively wavy yarns. The compressive strength values used in (B.2) were for T300/Epoxy ( $v_f = 0.6$ ) composites and hence the fiber compressive allowables used can be expected to yield reasonable values for only the higher harness satin fabrics. A consistent procedure to calculate compressive strengths of wavy yarn bundles based on the properties of the constituent fiber and matrix is required. This may then be used in (B.2) to obtain a reasonable value for  $\sigma_f$ . Typical values used for the strength analyses are shown in Table B-2.

#### REFERENCE

B-1. Zimmerman, R. S., Adams, D. F., and Walrath, D. E., "Investigation of the Relations Between Neat Resin and Advanced Composite Mechanical Properties", NASA CR-172303, November 1984. Table B-1.Procedure for Determining Fiber and Matrix Stressesfrom Bundle Stresses Using the Average Stress Model

· ....

Table B-2. Input Fiber and Matrix Strengths used for Fabrics Strength Analysis

T-300:  

$$\sigma_{f}^{+} = 350 \text{ ksi}$$

$$\sigma_{f}^{-} = 330 \text{ ksi}$$
Epoxy:  

$$\sigma_{m}^{+} = 8.3 \text{ ksi}$$

$$\sigma_{m}^{-} = 27.0 \text{ ksi}$$

$$\tau_{m} = 8.0 \text{ ksi}$$

1

3

### APPENDIX C.

CALCULATOR PROGRAMS

### LIST OF SYMBOLS

(as used in Appendix C)

| В        | constant used in equations for stresses in phases |  |  |  |  |  |  |
|----------|---------------------------------------------------|--|--|--|--|--|--|
|          | of composites                                     |  |  |  |  |  |  |
| Е        | Young's modulus                                   |  |  |  |  |  |  |
| G        | shear modulus                                     |  |  |  |  |  |  |
| К        | plane strain bulk modulus                         |  |  |  |  |  |  |
| \$       | stiffness constant                                |  |  |  |  |  |  |
| γ        | shear strain                                      |  |  |  |  |  |  |
| $\nabla$ | increment in stiffness due to Poisson's effects   |  |  |  |  |  |  |
| ε        | extensional strain                                |  |  |  |  |  |  |
| ν        | Poisson's ratio                                   |  |  |  |  |  |  |
| σ        | direct stress                                     |  |  |  |  |  |  |
| τ        | shear stress                                      |  |  |  |  |  |  |
|          |                                                   |  |  |  |  |  |  |

### SUBSCRIPTS AND SUPERSCRIPTS

| G | relates | to | shearing | resistance |
|---|---------|----|----------|------------|
|---|---------|----|----------|------------|

h hybrid

\*

ο

L lengthwise

T thicknesswise

W widthwise

attached to B as  $^{*}$ B indicates division by  $v_{f}^{}$ ,

i.e, 
$$*B = \frac{B}{v_f}$$

relates to properties for unidirectional reinforcements

#### APPENDIX C. CALCULATOR PROGRAMS

A programmable hand-held calculator, such as the Hewlett-Packard 41-C is adequate for preliminary surveys of properties of 3-D composites. Four programs developed for the 41-C for such surveys are included in this appendix, as follows:

- UNI Elastic Constants for Unidirectionally Reinforced Composites
- HYZ Elastic Constants and Strengths for  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$  3-D Reinforcement Configurations with Y- and Z- Direction Filaments Hybrids

HY Same as HYZ with only Y-Direction Filaments Hybrid

HZ Same as HYZ with only Z-Direction Filaments Hybrid

UNI, derived from the equations of reference C-1 is contained as a subroutine in the other three programs. HYZ, HY and HZ, utilizes algebraic extensions of the effectiveness coefficient analysis of reference C-2. Resulting equations are given in Tables C-1 to C-9.

These programs yield results identical to those obtained with NDPROP upper bound when the following restrictions apply:

- (1) All filaments are straight and un-crimped.
- (2) There is no unsymmetric divergence from the  $0^{\circ}/\pm \phi^{\circ}/90_{W}^{\circ}/90_{T}^{\circ}$  configuration that produces coupling actions i.e.  $0^{\circ}/\pm 30^{\circ}/\pm 45^{\circ}/90_{W}^{\circ}/90_{T}^{\circ}$  is not permissible. As long as coupling is avoided, any arbitrary proportions of filaments may be used.

Printouts of the programs are given in Tables C-10 to C-12. Operational instructions are given in Tables C-13 to C-15.

#### **REFERENCES**

- C-1 Rosen, B. W., Chatterjee, S. N., and Kibler, J. J., "An Analysis Model for Spatially Oriented Fiber Composites," ASTM STP 617, 1977.
- C-2 Dow, N. F., "Directions for 3-D Composite Reinforcement I: Intimations of Isotropy," Proc. AIAA 21st Structural Dynamics, Structures and Materials Conference, May 1980.

-

ł

## Tables C-1. Equations for Unidirectional Stiffnesses

$$\begin{aligned} s_{1\circ} &= \frac{E_{L}(1-\nu_{TW})}{1-\nu_{TW}-2\nu_{LW}\nu_{WL}} \\ s_{2\circ} &= \frac{\nu_{LW}E_{W}}{1-\nu_{TW}-2\nu_{LW}\nu_{WL}} \\ s_{2\circ} &= \frac{\nu_{LW}E_{W}}{1-\nu_{TW}-2\nu_{LW}\nu_{WL}} \\ s_{3\circ} &= \frac{\frac{\nu_{LW}E_{W}}{1-\nu_{TW}-2\nu_{LW}\nu_{WL}} \\ s_{4\circ} &= \frac{E_{W}(1-\nu_{LW}\nu_{WL})}{(1-\nu_{TW}-2\nu_{LW})(1+\nu_{TW})} \\ s_{5\circ} &= \frac{E_{W}(\nu_{TW}+\nu_{LW}\nu_{WL})}{(1-\nu_{TW}-2\nu_{LW}\nu_{WL})(1+\nu_{TW})} \\ s_{6\circ} &= \frac{E_{W}(1-\nu_{LW}\nu_{WL})}{(1-\nu_{TW}-2\nu_{LW}\nu_{WL})(1+\nu_{TW})} \\ s_{6\circ} &= \frac{E_{W}(1-\nu_{LW}\nu_{WL})}{(1-\nu_{TW}-2\nu_{LW}\nu_{WL})(1+\nu_{TW})} \\ s_{7\circ} &= G_{LW} \\ s_{8\circ} &= G_{TW} \\ s_{9\circ} &= G_{LT} \end{aligned}$$

.

Table C-2. Equations for 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$  Stiffnesses: (1) All Filaments of Same Material

$$\begin{aligned} \$_{1} &= \left( \frac{v_{f_{12}}}{v_{f}} \cos^{4} \phi + \frac{v_{f_{1}}}{v_{f}} \right) & \$_{1_{\circ}} + \left( \frac{v_{f_{12}}}{v_{f}} \sin^{4} \phi + \frac{v_{f_{2}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}} \right) & \$_{4_{\circ}} \\ & + 4 \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi \cos^{2} \phi \right) \left( \$_{7_{\circ}} + \frac{\$_{2_{\circ}}}{2} \right) \end{aligned}$$

$$\begin{aligned} s_{2} &= \left[ \frac{v_{f_{12}}}{v_{f}} (SIN^{4}\phi + COS^{4}\phi) + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{2}}}{v_{f}} \right] s_{2}, \\ &+ \left( \frac{v_{f_{3}}}{v_{f}} \right) s_{5,} + 4 \left[ \frac{v_{f_{12}}}{v_{f}} SIN^{2}\phi COS^{2}\phi \right] \left[ \frac{s_{1,} + s_{4,}}{4} - s_{7,} \right] \end{aligned}$$

$$\$_{3} = \left( \frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}} \right) \$_{2},$$
$$+ \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi + \frac{v_{f_{2}}}{v_{f}} \right) \$_{5},$$

$$\begin{aligned} \$_{4} &= \left( \frac{v_{f_{12}}}{v_{f}} \sin^{4} + \frac{v_{f_{2}}}{v_{f}} \right) \quad \$_{1_{\circ}} + \left( \frac{v_{f_{12}}}{v_{f}} \cos^{4} \phi + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}} \right) \quad \$_{4_{\circ}} \\ &+ 4 \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi \cos^{2} \phi \right) \quad \left( \$_{7_{\circ}} + \frac{\$_{2_{\circ}}}{2} \right) \end{aligned}$$

.

$$s_{5} = \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi + \frac{v_{f_{2}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}} \right) s_{2} + \left( \frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} \right) s_{5}$$
Table C-2. (cont.) Equations for 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$  Stiffnesses: (1) All Filaments of Same Material

$$\$_{6} - \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{1} + \left(\frac{v_{f_{12}}}{v_{f}} + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{2}}}{v_{f}}\right) \$_{4}$$

$$\$_7 = \left[ \frac{\mathbf{v}_{\mathbf{f}_{12}}}{\mathbf{v}_{\mathbf{f}}} (1-4 \operatorname{SIN}^2 \phi \operatorname{COS}^2 \phi) + \frac{\mathbf{v}_{\mathbf{f}_1}}{\mathbf{v}_{\mathbf{f}}} + \frac{\mathbf{v}_{\mathbf{f}_2}}{\mathbf{v}_{\mathbf{f}}} \right] \$_7 + \left[ \frac{\mathbf{v}_{\mathbf{f}_3}}{\mathbf{v}_{\mathbf{f}}} \right] \$_8.$$

+ 4 
$$\left(\frac{v_{f_{12}}}{v_{f}} \sin^2 \phi \cos^2 \phi\right) \left(\frac{\$_{1\circ} + \$_{4\circ}}{4} + \frac{\$_{2\circ}}{2}\right)$$

$$s_8 = \left(\frac{v_{f_{12}}}{v_f} \sin^2 \phi + \frac{v_{f_2}}{v_f} + \frac{v_{f_3}}{v_f}\right) \quad s_{7\circ} + \left(\frac{v_{f_{12}}}{v_f} \cos^2 \phi + \frac{v_{f_1}}{v_f}\right) \quad s_{8\circ}$$

$$\$_{9} = \left( \frac{v_{f_{12}}}{v_{f}} \cos^{2} \phi + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}} \right) \$_{7} + \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi + \frac{v_{f_{2}}}{v_{f}} \right) \$_{8}.$$

Table C-3. Equations for 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W_h}/90^{\circ}_T$  Configuration Stiffnesses:(2) 2-Direction Hybrid

$$\begin{aligned} s_{1} &= \left( \frac{v_{f_{12}}}{v_{f}} \cos^{4} \phi + \frac{v_{f_{1}}}{v_{f}} \right) s_{1} + \left( \frac{v_{f_{12}}}{v_{f}} \sin^{4} \phi + \frac{v_{f_{3}}}{v_{f}} \right) s_{4} + \\ &+ \left( \frac{v_{f_{2}}}{v_{f}} \right) s_{4} + 4 \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi \cos^{2} \phi \right) \left( s_{7} + \frac{s_{2}}{2} \right) \end{aligned}$$

$$\$_{2} = \left[\frac{v_{f_{12}}}{v_{f}} (SIN^{4}\phi + COS^{4}\phi) + \frac{v_{f_{1}}}{v_{f}}\right] \$_{2} + \left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{2} + \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{5}$$

$$+ 4 \left[ \frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi \cos^{2} \phi \right] \left[ \frac{\$_{1.} + \$_{4.}}{4} - \$_{7.} \right]$$

$$\$_{3} = \left(\frac{v_{f_{12}}}{v_{f}}\cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}}\right)\$_{2} + \left(\frac{v_{f_{12}}}{v_{f}}\sin^{2}\phi\right)\$_{5} + \left(\frac{v_{f_{2}}}{v_{f}}\right)\$_{5}$$

$$\begin{aligned} \$_{4} &= \left(\frac{v_{f_{12}}}{v_{f}} \sin^{4} \phi\right) \$_{1\circ} + \left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{1\circ} + \left(\frac{v_{f_{12}}}{v_{f}} \cos^{4} \phi + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}}\right) \$_{4\circ} \\ &+ 4 \left(\frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi \cos^{2} \phi\right) \left(\frac{v_{f_{12}}}{v_{f}} + \frac{v_{f_{12}}}{v_{f}}\right) + \frac{v_{f_{12}}}{v_{f}} + \frac{v_{f_{13}}}{v_{f}}\right) \Biggr\}$$

.

Table C-3.(cont.) Equations for 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W_{h}}/90^{\circ}_{T}$  Configuration Stiffnesses:(2) 2-Direction Hybrid

$$\$_{5} = \left(\frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi + \frac{v_{f_{3}}}{v_{f}}\right) \qquad \$_{2} + \left(\frac{v_{f_{2}}}{v_{f}}\right) \qquad \$_{2} + \left(\frac{v_{f_{12}}}{v_{f}} \cos^{2} \phi + \frac{v_{f_{1}}}{v_{f}}\right) \qquad \$_{5}$$

$$\$_{6} = \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{1_{\circ}} + \left(\frac{v_{f_{12}}}{v_{f}} + \frac{v_{f_{1}}}{v_{f}}\right) \$_{4_{\circ}} + \left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{4_{\circ}}_{h}$$

$$s_7 = \left[\frac{v_{f_{12}}}{v_f} (1-4 \ \text{SIN}^2 \phi \ \cos^2 \phi) + \frac{v_{f_1}}{v_f}\right] \quad s_{7\circ} + \left[\frac{v_{f_2}}{v_f}\right] \quad s_{7\circ}$$

$$+ \left(\frac{\mathbf{v}_{f_{3}}}{\mathbf{v}_{f}}\right) \quad \$_{8_{\circ}} + 4 \left(\frac{\mathbf{v}_{f_{12}}}{\mathbf{v}_{f}} \operatorname{SIN}^{2} \phi \operatorname{COS}^{2} \phi\right) \left(\frac{\$_{1_{\circ}} + \$_{4_{\circ}}}{4} + \frac{\$_{2_{\circ}}}{2}\right)$$

$$\$_{8} = \left(\frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi + \frac{v_{f_{3}}}{v_{f}}\right) \$_{7} + \left(\frac{v_{f_{2}}}{v_{f}}\right) \$_{7} + \left(\frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}}\right) \$_{8}.$$

$$\$_{9} = \left(\frac{v_{f_{12}}}{v_{f}}\cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}}\right) \$_{7} + \left(\frac{v_{f_{12}}}{v_{f}}\sin^{2}\phi\right) \$_{8} + \left(\frac{v_{f_{2}}}{v_{f}}\right) $

Table C-4. Equations for 3-D 0°/± $\phi$ °/90°/90° Configuration Stiffnesses: (3) 3-Direction Hybrid

$$\$_{1} = \left(\frac{v_{f_{12}}}{v_{f}}\cos^{4}\phi + \frac{v_{f_{1}}}{v_{f}}\right) \$_{1\circ} + \left(\frac{v_{f_{12}}}{v_{f}}\sin^{4}\phi + \frac{v_{f_{2}}}{v_{f}}\right) \$_{4\circ} + \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{4\circ}$$

+ 4 
$$\left[\frac{v_{f_{12}}}{v_{f}} \sin^2 \phi \cos^2 \phi\right] \left[s_{7, *} + \frac{s_{1, *}}{2}\right]$$

$$\begin{aligned} \$_{2} &= \left[ \frac{v_{f_{12}}}{v_{f}} (SIN^{4}\phi + COS^{4}\phi) + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{2}}}{v_{f}} \right] \$_{2} + \left[ \frac{v_{f_{3}}}{v_{f}} \right] \$_{5} \\ &+ 4 \left[ \frac{v_{f_{12}}}{v_{f}} SIN^{2}\phi COS^{2}\phi \right] \left[ \frac{\$_{1} + \$_{4}}{4} - \$_{7} \right] \end{aligned}$$

$$\$_{3} = \left(\frac{v_{f_{12}}}{v_{f}}\cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}}\right) \$_{2} + \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{2} + \left(\frac{v_{f_{12}}}{v_{f}}\sin^{2}\phi + \frac{v_{f_{2}}}{v_{f}}\right) \$_{5}$$

$$\$_4 = \left( \frac{v_{f_{12}}}{v_f} \sin^4 \phi + \frac{v_{f_2}}{v_f} \right) \qquad \$_{1\circ} + \left( \frac{v_{f_{12}}}{v_f} \cos^4 \phi + \frac{v_{f_1}}{v_f} \right) \qquad \$_{4\circ} + \left( \frac{v_{f_3}}{v_f} \right) \qquad \$_{4\circ}$$

+ 4 
$$\left[\frac{v_{f_{12}}}{v_{f}} SIN^{2} \phi COS^{2} \phi\right] \left[ s_{7} + \frac{s_{2}}{2} \right]$$

Table C-4.(cont.) Equations for 3-D 0°/± $\phi$ °/90°/90° Configuration Stiffnesses: (3) 3-Direction Hybrid

$$\$_{5} - \left(\frac{\mathbf{v}_{\mathbf{f}_{12}}}{\mathbf{v}_{\mathbf{f}}} \operatorname{SIN}^{2} \phi + \frac{\mathbf{v}_{\mathbf{f}_{2}}}{\mathbf{v}_{\mathbf{f}}}\right) \$_{2} + \left(\frac{\mathbf{v}_{\mathbf{f}_{3}}}{\mathbf{v}_{\mathbf{f}}}\right) \$_{2} + \left(\frac{\mathbf{v}_{\mathbf{f}_{12}}}{\mathbf{v}_{\mathbf{f}}} \cos^{2} \phi + \frac{\mathbf{v}_{\mathbf{f}_{1}}}{\mathbf{v}_{\mathbf{f}}}\right) \$_{5}$$

$$\$_6 = \left[ \frac{v_{f_3}}{v_f} \right] \$_{1.h} + \left[ \frac{v_{f_{12}}}{v_f} + \frac{v_{f_1}}{v_f} + \frac{v_{f_2}}{v_f} \right] \$_{4.h}$$

$$\$_{7} = \left[\frac{v_{f_{12}}}{v_{f}} (1-4 \ \text{SIN}^{2}\phi \ \cos^{2}\phi) + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{2}}}{v_{f}}\right] \$_{7} + \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{8} \underset{h}{\$}$$

$$+ 4 \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2} \phi \cos^{2} \phi \right) \left( \frac{\$_{1\circ} + \$_{4\circ}}{4} + \frac{\$_{2\circ}}{2} \right)$$

$$\$_{8} = \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi + \frac{v_{f_{2}}}{v_{f}} \right) \$_{7} + \left( \frac{v_{f_{3}}}{v_{f}} \right) \$_{7} + \left( \frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} \right) \$_{8}$$

$$\$_{9} = \left(\frac{v_{f_{12}}}{v_{f}}\cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}}\right) \$_{7} + \left(\frac{v_{f_{3}}}{v_{f}}\right) \$_{7} + \left(\frac{v_{f_{12}}}{v_{f}}\sin^{2}\phi + \frac{v_{f_{2}}}{v_{f}}\right) \$_{8}$$

Table C-5. Equations for 3-D 0°/± $\phi$ °/90° /90° Configuration Stiffnesses: (4) 2- and 3- Directions Hybrids

$$\begin{aligned} \$_{1} = \left( \frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} \right) & \$_{1\circ} + \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi \right) & \$_{4\circ} + \left( \frac{v_{f_{2}}}{v_{f}} \\ & + \frac{v_{f_{3}}}{v_{f}} \right) & \$_{4\circ} + 4 \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi \cos^{2}\phi \right) \left( \$_{7\circ} + \frac{\$_{2\circ}}{2} \right) \end{aligned}$$

$$\begin{aligned} \$_{2} &= \left[ \frac{v_{f_{12}}}{v_{f}} (SIN^{2}\phi + COS^{2}\phi) + \frac{v_{f_{1}}}{v_{f}} \right] \$_{2} + \left\{ \frac{v_{f_{2}}}{v_{f}} \right\} \$_{2} + \left\{ \frac{v_{f_{3}}}{v_{f}} \right\} \$_{2} + \left\{ \frac{v_{f_{3}}}{$$

$$\$_{3} = \left( \frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}} \right) \$_{2} + \left( \frac{v_{f_{3}}}{v_{f}} \right) \$_{2} + \left( \frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi \right) \$_{5} + \left( \frac{v_{f_{2}}}{v_{f}} \sin^{2}\phi \right) \$_{5} + \left( \frac{v_{f_{2}}}{v_{f}} \right)$$

.....

$$\begin{aligned} \$_{4} &= \left( \frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{4} \phi \right) \quad \$_{1\circ} + \left( \frac{v_{f_{2}}}{v_{f}} \right) \quad \$_{1\circ} + \left( \frac{v_{f_{12}}}{v_{f}} \cos^{4} \phi + \frac{v_{f_{1}}}{v_{f}} \right) \quad \$_{4\circ} \\ &+ \left( \frac{v_{f_{3}}}{v_{f}} \right) \quad \$_{4\circ} + 4 \left( \frac{v_{f_{12}}}{v_{f}} \operatorname{SIN}^{2} \phi \cos^{2} \phi \right) \left( \$_{7\circ} + \frac{\$_{2\circ}}{2} \right) \end{aligned}$$

Table C-5.(cont.) Equations for 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W_{h}}$  Configuration Stiffnesses: (4) 2- and 3- Directions Hybrids

$$\$_{5} = \left(\frac{v_{f_{12}}}{v_{f}} \sin^{2}\phi\right) \$_{2} + \left(\frac{v_{f_{2}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}}\right) \$_{2} + \left(\frac{v_{f_{12}}}{v_{f}} \cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}}\right) \$_{5}$$

$$\$_{6} = \begin{pmatrix} v_{f_{3}} \\ v_{f} \end{pmatrix} \$_{1_{h}} + \begin{pmatrix} v_{f_{12}} \\ v_{f} + v_{f_{1}} \\ v_{f} \end{pmatrix} \$_{4_{o}} + \begin{pmatrix} v_{f_{2}} \\ v_{f} \end{pmatrix} \$_{4_{o}}_{h}$$

$$\$_{7} = \left[\frac{v_{f_{12}}}{v_{f}} (1 - 4 \operatorname{SIN}^{2} \phi \operatorname{COS}^{2} \phi) + \frac{v_{f_{1}}}{v_{f}}\right] \$_{7} + \left(\frac{v_{f_{2}}}{v_{f}}\right] \$_{7}_{h}$$

$$+ \left(\frac{\mathbf{v}_{f_3}}{\mathbf{v}_{f}}\right) \mathbf{s}_{8_{h}} + 4 \left(\frac{\mathbf{v}_{f_{12}}}{\mathbf{v}_{f}} \operatorname{SIN}^2 \phi \operatorname{COS}^2 \phi\right) \left(\frac{\mathbf{s}_{1_{\bullet}} + \mathbf{s}_{4_{\bullet}}}{4} + \frac{\mathbf{s}_{2_{\bullet}}}{2}\right)$$

$$\$_{8} = \left( \begin{array}{c} \frac{v_{f_{12}}}{v_{f}} & \sin^{2}\phi \end{array} \right) \qquad \$_{7} + \left( \begin{array}{c} \frac{v_{f_{2}}}{v_{f}} & \frac{v_{f_{3}}}{v_{f}} \end{array} \right) \qquad \$_{7} \\ h \end{array}$$

$$+ \left( \frac{v_{f_{12}}}{v_{f}} \cos^2 \phi + \frac{v_{f_{1}}}{v_{f}} \right) \hat{s}_{8}$$

Table C-5.(cont.) Equations for 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W_{h}}$  Configuration  $H_{h}$  Stiffnesses: (4) 2- and 3- Directions Hybrids

$$\$_{9} = \left(\frac{v_{f_{12}}}{v_{f}}\cos^{2}\phi + \frac{v_{f_{1}}}{v_{f}}\right)\$_{7} + \left(\frac{v_{f_{3}}}{v_{f}}\right)\$_{7}$$

$$+ \left( \frac{\mathbf{v}_{f_{\underline{12}}}}{\mathbf{v}_{f}} \operatorname{SIN}^{2} \phi \right) \mathbf{s}_{8} + \left( \frac{\mathbf{v}_{f_{\underline{2}}}}{\mathbf{v}_{f}} \right) \mathbf{s}_{8}$$

....

Table C-6. Definitions of Constants Used in Equations for Average Stresses

$$\mathbf{B}' = \mathbf{G}_{\mathbf{L}W} \begin{pmatrix} \mathbf{G}_{\mathbf{L}W} - \mathbf{G}_{\mathbf{m}} \\ \mathbf{G}_{\mathbf{f}_{\mathbf{L}W}} & \mathbf{G}_{\mathbf{m}} \end{pmatrix} = \mathbf{G}_{\mathbf{f}_{\mathbf{L}W}} \boldsymbol{\beta}' \mathbf{v}_{\mathbf{f}} \qquad \mathbf{B}' = \mathbf{G}_{\mathbf{m}} \begin{pmatrix} \mathbf{G}_{\mathbf{f}_{\mathbf{L}W}} - \mathbf{G}_{\mathbf{L}W} \\ \mathbf{G}_{\mathbf{f}_{\mathbf{L}W}} & \mathbf{G}_{\mathbf{m}} \end{pmatrix}$$

$$B'' = G_{f_{TW}} \left( \begin{array}{c} G_{TW} - G_{m} \\ G_{f_{TW}} - G_{m} \end{array} \right) = G_{f_{tw}} \beta'' v_{f} \qquad B'' = G_{m} \left( \begin{array}{c} G_{f_{TW}} - G_{TW} \\ G_{f_{TW}} - G_{m} \\ G_{f_{TW}} - G_{m} \end{array} \right)$$

$$B_{LW} = \nu_{f_{LW}} K_{f} \left( \frac{K - K_{m}}{K_{f} - K_{m}} \right) = \nu_{f_{LW}} K_{f} \beta_{LW} v_{f} \qquad B_{LW} - \nu_{m} K_{m} \left( \frac{K_{f} - K}{K_{f} - K_{m}} \right)$$

$$B_{L} = \frac{\nabla_{f} E_{f_{L}} + \nabla}{2} + 2 \nu_{LW} B_{LW} \qquad B_{-L} = \frac{\nabla_{m} E_{m}}{2} + 2 \nu_{LW} B_{-LW}$$
$$B_{T} = \frac{1}{2} \left( \frac{B_{LW}}{\nu_{f_{LW}}} + B'' \right) \qquad B_{-T} = \frac{1}{2} \left( \frac{B_{LW}}{\nu_{m}} + B''_{-} \right)$$

$$B_{G} = \frac{1}{2} \left( \frac{B_{LW}}{\nu} - B'' \right) \qquad B_{-G} = \left( \frac{B_{LW}}{\nu} - B'' \right)$$

with

.

$$B' + B'_{-} = G_{LW} = \$_{7_{\circ}} = \$_{9_{\circ}}$$

$$B_{T} + B_{-T} = \frac{\$_{4_{\circ}}}{2} = \frac{\$_{6_{\circ}}}{2} = \left(\frac{1 - \nu_{LW}\nu_{WL}}{1 + \nu_{TW}}\right) \quad K_{\circ}$$

Table C-6.(cont.) Definitions of Constants Used in Equations for Average Stresses

$$B'' + B''_{-} = G_{TW} = \$_{8}, \qquad B_{G} + B_{-G} = \frac{\$_{5}}{2}$$

$$B_{LW} + B_{LW} = \frac{\$_{2}}{2} = \frac{\$_{3}}{2}$$

$$K_{\circ} = \$_{4} - \$_{8}, = \frac{\$_{4} + \$_{5}}{2} = \$_{5} + \$_{8} = B_{T} + B_{-T} + B_{G} + B_{-G}$$

$$= 2 [B_{T} + B_{-T} - (B'' + B''_{-})]$$

$$B_{L} + B_{-T} = \frac{\$_{1}}{2}$$

where the plane-strain bulk moduli are

$$K_{\circ} = \frac{\frac{\nabla_{f}K_{f}}{K_{f}^{+}G_{M}} + \frac{\nabla_{m}K_{m}}{K_{m}^{+}G_{m}}}{\frac{\nabla_{f}}{K_{f}^{+}G_{m}} + \frac{\nabla_{m}}{K_{m}^{+}G_{m}}} = \frac{E_{W}}{2(1 - \nu_{TW}^{-}2\nu_{LW}\nu_{WL})} = \$_{4_{\circ}} - \$_{8_{\circ}} = \frac{\$_{4_{\circ}} + \$_{5_{\circ}}}{2}$$

$$K_{f} = \frac{E_{f}}{\frac{2(1 - \nu_{f}^{-}2\nu_{f}^{-}\nu_{f}^{-}\nu_{f}^{-}})}{2(1 - \nu_{f}^{-}2\nu_{f}^{-}\nu_{f}^{-}\nu_{f}^{-}})}, \quad K_{M} = \frac{E_{m}}{2(1 - \nu_{m}^{-}2\nu_{m}^{2})} = \frac{G_{m}}{1 - 2\nu_{m}}$$

and

$$\nabla = 4\mathbf{v}_{f} \frac{\left( \nu_{f_{LW}} - \nu_{m} \right)^{2}}{\frac{1}{K_{f}} + \frac{1}{v_{m}}} \left( \frac{\mathbf{v}_{f} + 1}{K_{m} - \mathbf{w}_{m}} \right)^{2}$$

Table C-7. Relationships Among Previously Identified Constants (ref.C-2) and Those Used Herein

$$\beta' v_{f} = \frac{G_{LW} - G_{m}}{G_{f_{LW}} - G_{m}}$$

$$\beta'' \mathbf{v}_{f} = \frac{\mathbf{G}_{TW} - \mathbf{G}_{m}}{\mathbf{G}_{f} - \mathbf{G}_{m}}$$

$$\beta_{LW} v_{f} = \frac{K - K_{m}}{K_{f} - K_{m}}$$



$$\beta_{T} v_{f} = \frac{B_{T}}{\left(\frac{1 - \nu_{f} v_{f}}{1 + \nu_{f}}\right) K_{f}} \qquad 1 - \beta_{T} v_{f} = \frac{B_{-T}}{\nu_{m} K_{m}}$$

$$\beta_{G} \mathbf{v}_{f} = \frac{\mathbf{B}_{G}}{\mathbf{v}_{f} \mathbf{K}_{f}} \qquad 1 - \beta_{-G} \mathbf{v}_{f} = \frac{\mathbf{B}_{-G}}{\mathbf{v}_{m} \mathbf{K}_{m}}$$

Table C-8. Equations for Stresses in 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$  Configurations: (1) All Filaments of Same Material

Along the  $\pm \phi^\circ$  filaments, for positive applied shear stresses -

$$\sigma_{f_{12}} - \epsilon_{S_{L+}} * B_{L} + \left(\epsilon_{S_{W+}} + \epsilon_{z}\right) * B_{LW} \qquad \sigma_{m_{12}} - \epsilon_{S_{L+}} * B_{L+} - L^{+} \left(\epsilon_{S_{W+}} + \epsilon_{z}\right) * B_{LW}$$
(1)

Along the  $\pm\phi^\circ$  filaments, for negative applied shear stresses -

$$\sigma_{f_{12}} = \epsilon_{S_{L^{-}}} *B_{L} + \left(\epsilon_{S_{W^{-}}} + \epsilon_{z}\right) *B_{LW} \qquad \sigma_{m_{12}} = \epsilon_{S_{L^{-}}} *B_{-L} + \left(\epsilon_{S_{W^{-}}} + \epsilon_{z}\right) *B_{LW} \qquad (2)$$

In plane, transverse to the  $\pm\phi^\circ$  filaments, for positive applied shear stresses -

$${}^{\sigma} \mathbf{f}_{12} = \epsilon \mathbf{S}_{L+} {}^{*B} \mathbf{L} \mathbf{W}^{+\epsilon} \mathbf{S}_{W+} {}^{*B} \mathbf{T}^{+\epsilon} \mathbf{z}^{*B} \mathbf{G} \qquad {}^{\sigma} \mathbf{m}_{12} = \epsilon \mathbf{S}_{L+} {}^{*B} \mathbf{L} \mathbf{W}^{+\epsilon} \mathbf{S}_{W+} {}^{*B} \mathbf{T}^{+\epsilon} \mathbf{z}^{*B} \mathbf{G} \qquad (3)$$

In plane, transverse to the  $\pm\phi^\circ$  filaments, for negative applied shear stresses -

$$\sigma_{f_{12}} = \epsilon_{S_{L}} * B_{LW} + \epsilon_{S_{W}} * B_{T} + \epsilon_{z} * B_{G} \qquad \sigma_{m_{12}} = \epsilon_{S_{L}} * B_{LW} + \epsilon_{S_{W}} * B_{T} + \epsilon_{z} * B_{G} \qquad (4)$$

Thru the thickness transverse to the  $\pm \phi^\circ$  filaments, for positive applied shear stresses -

$${}^{\sigma}f_{12}_{T+} = {}^{\epsilon}S_{L+} {}^{*B}LW + {}^{\epsilon}S_{W+} {}^{*B}G + {}^{\epsilon}z {}^{*B}T \qquad {}^{\sigma}m_{12}_{T+} = {}^{\epsilon}S_{L+} {}^{*B}LW + {}^{\epsilon}S_{W+} {}^{*B}G + {}^{\epsilon}z {}^{*B}T \qquad (5)$$

.

Table C-8.(cont.) Equations for Stresses in 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$ Configurations: (1) All Filaments of Same Material

Thru the thickness transverse to the  $\pm \phi^\circ$  filaments, for negative applied shear stresses -

$$\sigma_{f_{12}} = \epsilon_{S_{L}} * B_{LW} + \epsilon_{S_{W}} * B_{G} + \epsilon_{z} * B_{T}$$

$$\sigma_{m_{12}} = \epsilon_{S_{L}} * B_{LW} + \epsilon_{S_{W}} * B_{G} + \epsilon_{z} * B_{T}$$

$$(6)$$

Along the 0° filaments -

.

$$\sigma_{f_{1_{L}}} = \epsilon_{x} * B_{L} + (\epsilon_{y} + \epsilon_{z}) * B_{LW} \qquad \sigma_{m_{1_{L}}} = \epsilon_{x} * B_{-L} + (\epsilon_{y} + \epsilon_{z}) * B_{-LW}$$
(7)

In plane transverse to the 0° filaments -

$$\sigma_{f_{1_{W}}} = \epsilon_{x} * B_{LW} + \epsilon_{y} * B_{T} + \epsilon_{z} * B_{G}, \qquad \sigma_{m_{1_{W}}} = \epsilon_{x} * B_{-LW} + \epsilon_{y} * B_{-T} + \epsilon_{z} * B_{-G}$$
(8)

TTT transverse to the 0° filaments -

$$\sigma_{f_{1_{T}}} = \epsilon_{x} * B_{LW} + \epsilon_{y} * B_{G} + \epsilon_{z} * B_{T} \qquad \sigma_{m_{1_{T}}} = \epsilon_{x} * B_{-LW} + \epsilon_{y} * B_{-G} + \epsilon_{z} * B_{-T} \qquad (9)$$

Along the in-plane 90° filaments -

$$\sigma_{f_{2_{L}}} = (\epsilon_{x} + \epsilon_{z}) * B_{LW} + \epsilon_{y} * B_{L} \qquad \sigma_{m_{2_{L}}} = (\epsilon_{x} + \epsilon_{z}) * B_{LW} + \epsilon_{y} * B_{L} \qquad (10)$$

In-plane transverse to the in-plane 90° filaments -

$$\sigma_{f_{2_{W}}} = \epsilon_{x} * {}^{*}B_{T} + \epsilon_{y} * {}^{*}B_{LW} + \epsilon_{z} * {}^{*}B_{G} \qquad \sigma_{m_{2_{W}}} = \epsilon_{x} * {}^{*}B_{T} + \epsilon_{y} * {}^{*}B_{LW} + \epsilon_{z} * {}^{*}B_{G} \qquad (11)$$

TTT transverse to the in-plane 90° filaments -

$$\sigma_{f_{2_{T}}} = \epsilon_{x} * {}^{B}_{G} + \epsilon_{y} * {}^{B}_{LW} + \epsilon_{z} * {}^{B}_{T} \qquad \sigma_{m_{2_{T}}} = \epsilon_{x} * {}^{B}_{G} + \epsilon_{y} * {}^{B}_{LW} + \epsilon_{z} * {}^{B}_{T} \qquad (12)$$

Table C-8.(cont.) Equations for Stresses in 3-D  $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$ Configurations: (1) All Filaments of Same Material

Along the TTT 90° filaments -

$$\sigma_{f_{3_{L}}} = (\epsilon_{x} + \epsilon_{y}) * B_{LW} + \epsilon_{z} * B_{L} \qquad \sigma_{m_{3_{L}}} = (\epsilon_{x} + \epsilon_{y}) * B_{LW} + \epsilon_{z} * B_{L} \qquad (13)$$

Transverse (y-direction) to the TTT 90° filaments -

$$\sigma_{f_{3_{W_{y}}}} = \epsilon_{x}^{*B}G^{+\epsilon_{y}} + \epsilon_{y}^{*B}LW \qquad \sigma_{m_{3_{W_{y}}}} = \epsilon_{x}^{*B}G^{+\epsilon_{y}} - T^{+\epsilon_{z}^{*B}}LW \qquad (14)$$

Transverse (x-direction) to the TTT 90° filaments -

$$\sigma_{f_{3_{W_{x}}}} = \epsilon_{x} * B_{T} + \epsilon_{y} * B_{G} + \epsilon_{z} * B_{LW} \qquad \sigma_{m_{3}} = \epsilon_{x} * B_{-T} + \epsilon_{y} * B_{-G} + \epsilon_{z} * B_{-LW} \qquad (15)$$

:

## Table C-9 - Equations for Stresses in 3-D $0^{\circ}/\pm \phi^{\circ}/90^{\circ}_{W}/90^{\circ}_{T}$ Configurations: (2) 2- or 3-Direction Hybrid.

These equations have the same form as those in Table C-8, but the B quantities are those for the filaments in question. Thus, in all cases equations (1) - (9) are unchanged. Equations (10) - (12) become  $\sigma_{f_{2_L}} = (\epsilon_x + \epsilon_z) * B_{LW_2} + \epsilon_y * B_L$ , etc. if the in-plane 90° filaments are hybrids, and equations (13) - (15) become  $\sigma_{f_{3_L}} = (\epsilon_x + \epsilon_y) * B_{LW_2} + \epsilon_z * B_L$ , etc. if the thru the thickness filaments are of the second material.

Table C-10. Print-Out of Program HY

ı.

ï

•

ORIGINAL PAGE IS OF POOR QUALITY

.

•

;

| ā                | 1 at 51            | • JV             | v- 51          | 593            | 5 Q 2     | I ĝi  | sti              | 0 28                | 1        | 51           | ST+        | 83  | 201          | 201            | 53       | 251        | ST/          | 25              | 391           | PCL            | 62              | 351         | STO                 | 93             | 481          | RCL                 | <b>9</b> 5 |
|------------------|--------------------|------------------|----------------|----------------|-----------|-------|------------------|---------------------|----------|--------------|------------|-----|--------------|----------------|----------|------------|--------------|-----------------|---------------|----------------|-----------------|-------------|---------------------|----------------|--------------|---------------------|------------|
| a.               | 9 YEDA<br>9 25     | . 81.<br>        | A 01<br>€2     | YE             | 1 01      | 10    | 2 201            | 27                  |          | 152          | PCI        | 12  | 201          | CTL            | 77       | 252        | ст.          | 50              | 792           |                |                 | 352         | ST0                 | 59             | 4 <b>H</b> C |                     |            |
| - 17<br>- 17     | ् तुह<br>च त्रूच्य | 192<br>5 - 21199 | . 57           | VE             | 1 C.      | 10    |                  | 1 21                | · • ;    | 57           | CT.        | 30  | 000          | 917<br>1001    | - 27     | 201        | 071          | 20              | 707           | ा ः            | 65              | 353         | *                   |                | 483          | RCL                 | 52         |
|                  | с 1914<br>А. М     | ; -м»<br>"       | ् २२<br>७. हर  | - AC1          | 1 10      | 12.   | : 3N<br>4 87.    | ,                   |          | 5.1          | 501        | 71  | 290<br>004   | - XUL<br>- 501 | 00       | 200<br>551 | - RUL<br>878 | 20              | 794           | 201            | - 26            | 354         | ÷                   |                | 484          | STO                 | 69         |
| - <del>7</del> . | **:51              | HT               | 1" J4<br>FF    |                |           | 10    | • 313<br>5 861   | 7 -36<br>1 40       |          | 55           | ***        | 1   | 279          | - KUL          | Ю.4      | 234        | 510<br>510   | 02              | 705           | . DCI          | . 27            | 755         | STO                 | 49             | 485          | RCI                 | 73         |
| - K.             | 5 Sr               | 92               | 50             | XEN            | 1.81      | 185   | ) KU             |                     |          | 22           | -<br>      | 47  | 285          | *              |          | 200        | 070          |                 | 762           |                | 0.0             | 756         | DCI                 | 27             | 486          | STa                 | 12         |
| Ø                | 641.51             | -HA.             | 5              | ¢F             | 01        | 186   | ) +<br>          |                     | 1        | 36           | 51+        | 03  | 206          | RCL            | 93       | 206        | Siu          | 6.5             | 300           |                |                 | 757         | - RUL<br>- 67.4     | . 0.7          | 100          |                     | şε         |
| 07               | 7 . 89             | ):               | 57             | CF             | 82        | 187   |                  | . 89                |          | 57           | RCL        | 92  | 207          | RCL            | 68       | - 257      | RCL          | 25              | 307           | 510            | 54              | 337         | -01+<br>-070        | 21             | 400          |                     | -00        |
| 9                | - STO              | ) 37 -           | - 59           | 801            | . 16      | 104   | <b>k x</b>       |                     | 1        | 58           | ST+        | 98  | 208          | *              |          | 258        | RC:          | 37              | 308           | ST.            | 75              | 320         | - 571U<br>- 561     | 37             | 448          | 310                 | ΫŹ         |
| - <b>8</b> 4     | STS                | 38               | - 59           | 510            | 33        | 109   | 9 ST (           | - 66                | 1        | 59           | 57+        | -37 | 209          | -              |          | 259        | *            |                 | 383           |                | 41              | 304         | RUL                 | 2.5            | 489          | +                   |            |
| 19               | ES?                | 62               | 68             | STO            | 34        | 118   | ) RCL            | . 6ń                | 1        | 68           | RCL        | -97 | 218          | STO            | 25       | 260        | RCI          | 50              | 318           | SIN            |                 | 368         | \$10                | 61             | 419          | RCL                 | 63         |
| 11               | XEQ                | Ň.               | 51             | STO            | 36        | 111   | ST-              | - 34                | 1        | 61           | ST+        | 88  | 211          | STO            | 49       | 261        | RC!          | 88              | 311           | ST#            | - 54            | 361         | ST*                 | 43             | 411          | RCL                 | 73         |
| C.               | XF9                | 10               | 62             | STO            | 37        | 112   | ST               | 35                  | 1        | 62           | RCL        | 18  | 212          | 201            | 83       | 252        |              |                 | - 312         |                |                 | 362         | *                   |                | 412          | *                   |            |
| 17               | 1 970              | 52               | 63             | ST:            | 66        | 113   | ST               | 59                  | 1        | 63           | RCL        | 42  | 217          | PC!            | 28       | 263        | +            |                 | 313           | \$T+           | - 22            | 363         | STO                 | 44             | 413          | +                   |            |
| 1.               | 1 370<br>1 370     | 72               | 11             | 1              | ••        | 114   | PC               | - 72                | i        | 64           | *          |     | 214          | 2              |          | 264        | ST-          | 29              | 314           | ST-            | 65              | 364         | RCL                 | 62             | 414          | STO                 | 42         |
| 15               | r (010<br>1. 051   | - 7.6<br>- 62    | 25             | ŝei            | 26        | 115   |                  |                     | 5        | 65           | şei        | 34  | 215          | 001            | 77       | 265        | 271          | 20              | 315           | STR            | 7:              | 365         | ST*                 | 91             | 415          | PCL                 | 46         |
| 1.               | / RUL<br>• U/\     |                  | 22             | - 010<br>- 010 |           | 114   | - CV1            | . 02                | i        | 65           | PCI        | 47  | 512          | DOD            | 40       | 244        | ST/          | 42              | 715           | ST+            | 71              | 366         | ST+                 | 37             | 416          | STO                 | 74         |
| 1                | 5 8Q<br>1 878      |                  | 00             | 310<br>675     | 1991.<br> | 110   | 1 31T            | . <u>96</u><br>. 98 | ť        | 67           | CT+        | 55  | 210          | - <b>T</b> UL  | 90       | 201        | 201          | 50              | 217           | DPI            | 54              | 767         | e7.                 | 37             | 417          | 975                 | 79         |
| 11               | Sig                | 11               | 57<br>20       | 51+            | 41        | - 117 | 317<br>DOI       | · 27                | :        | 01<br>2.5    | - Q ( •    | 10  | 217          | *              |          | 207        | ж            | .,н             | 710           | 200            | 75              | 760         | 2014                | 52             | 410          | - 01.4<br>- 07.≢    | 00         |
| 18               | 201                | <b>9</b> 7       | - 68           | 005            |           | 113   | NCL.             | . 16                | 1        | 00<br>40     |            |     | 218          | -              |          | 600        | /<br>        | 70              | 210           | - XUL<br>- AV- | - 4-3<br>- 15-4 | 300         | ж., с.<br>          | 34             | 416          | 01#<br>074          | 00<br>70   |
| 35               | 80                 | <b>8</b> 5       | 69             | X12            |           | - 119 | RCL              | . <u>1</u> 7        | 1        | 65           | *          |     | - 219        | 'STO           | 10       | 269        | 59*          | 3 <b>8</b>      | 319           | 317            | -04             | 304         | ¥<br>57.            |                | - 419        | _)∤≢<br>            | 38<br>     |
| 20               | 510                | 15               | . 78           | STQ            | 22        | 128   | ST+              | - 34                | 1        | 7 <b>Ŗ</b>   | XCL.       | 19  | - 228        | STG            | 60       | 279        | SL/          | 53              | - 320         | -              |                 | - 378       | 51+                 | 43             | 429          | 8.1                 | 63         |
| -21              | ्रतः               | 83               | . 71           | ST=            | 36        | i21   | -\$ <b>1</b> +   | - 36                | j        | 71           | St≉        | 49  | 221          | REL            | 96       | 271        | RCL          | 38              | 321           | STO            | 66              | 371         | •                   |                | 421          | ST≇                 | 24         |
| 22               | ST0                | 13               | - 72           | \$T <b>≭</b>   | 37        | 122   | ST+              | - 37                | 1        | 72           | RCL        | 45  | 222          | RCE            | 88       | 272        | RCL          | 59              | 322           | \$Te           | 75              | 372         | SCL                 | 61             | 422          | RCE                 | 73         |
| 23               | i RCL              | 89               | - 73           | ST#            | 37        | 123   | ÷                |                     | 1        | 73           | *          |     | 223          | *              |          | 273        | 1            |                 | - 323         | RCL            | 90              | 373         | ST*                 | 89             | .423         | *                   |            |
| 24               | ×()                | 84               | - 74           | ST#            | ón        | 124   | ST*              | - 84                | 1        | 7Ł           | +          |     | 224          | 201            | 37       | - 274      | RCL          | 19              | 324           | -\$77          | 95              | 374         | RCF                 | 37             | 424          | 201                 | 83         |
| 25               | STG                | 14               | 75             | STO            | 75        | 125   | RCL              | 84                  | 1        | 75           | ST+        | 35  | 225          | RCL            | 03       | 275        | *            |                 | 325           | ST/            | 31              | 375         | $\langle X \rangle$ | 31 -           | 425          | ÷                   |            |
| 26               | RC                 | 88               | 76             | -              |           | 126   | ST+              | - 96                | 1        | 76           | RUL        | 67  | 226          | *              | •••      | 276        | st/          | 61              | 326           | 57/            | 51              | 376         | STO                 | <u>9</u> 4     | 425          | RCL                 | 61         |
| 27               | STO                | 71               | 77             | ST#            | 33        | 127   | ST+              | A9                  | . 1      | 77           | RCL        | 33  | 227          | <u>_</u> :     |          | 277        | XCS          | 19              | 327           | -<br>ST/       | 52              | 377         | ST#                 | 31             | .427         | ST*                 | 78         |
| 28               | 971                | 57               | 72             | \$76           | 55        | 128   | 801              | 19                  | 1        | 78           | *          | -   | 228          | STO            | 30       | 278        | 138          | 61              | 328           | -<br>STZ       | 53              | 378         | STE                 | 33             | 428          | PC!                 | 77         |
| 29               | STO                | 12               | 79             | 51:            | 66        | 129   | PC!              | 55                  | 1        | 79           | RCL        | 42  | 224          | STO            | 58       | 279        | *            | •               | . 329         | ST/            | 58              | 379         | *                   | •              | 129          | x                   |            |
| 70               | DAI                | 45               | 20             | ST-            | 75        | 132   |                  | •••                 | . 1      | RA           | PC1        | 18  | 279          | 0.10           | 26       | 289        | ST-          | 63              | 770           | ST/            | 70              | 700         | CT.                 | ឆ្នា           | 370          | ī                   |            |
| 21               | CTD                | 4.J<br>4.4       | 01             | 240            | 1.0       | 171   | ST+              | 99                  |          | 81           | STa        | 44  | 220          | DCI            | 00       | 281        | P(1          | 61              | 77!           | CT/            | 72              | 701         |                     | 01             | 471          | e TA                | 40         |
| 72               | 001                | 51               | 02             | *              |           | 132   | 001              | 22                  | ti ti    | 82           | *          | **  | 201          | RGL.           | 07       | 282        | DCI          | 62              | 777           | 01/<br>CT/     | 77              | 301<br>700  | ста                 |                | 401          | 001                 | 90<br>24   |
| 7                | - AUL<br>- ATA     | -)1<br>70        | 07             | eta            | ٤١        | 177   | CTO              | 07                  |          | 57           | Ţ          |     | 232          | T<br>DCI       | 00       | 202        | DOM .        | 25              | - 332         | 51/            | 73              | 302         | 310                 | 71             | 402          |                     | 0:         |
| 3.3              | 510                | (1)              | 0.0            | 310            | 0i.       | 100   | 510              | 70                  | 1.<br>•  | 00<br>04     | т<br>674   | 10  |              | RUL .          | 62       | 200        | #62          | 20              | 333           | 517            | /4              | 383         | XUL                 | 61             | 435          | RCL                 | 62         |
| 34               | KLL                | 76               | 84             | K1.2           | йh        | 134   | 210              | 48                  | 1        |              | RUL        | 17  | 234          | ATZ            |          | 284        | *            | • •             | + 554         | KCL            | 5ć              | 384         | RCT                 | 46             | 434          | ST*                 | 78         |
| 57               | XO                 | 85               | 80             | 510            | 22        | 133   | XIL<br>AT.       | 33                  | 1        | 50           | KUL        | 63  | 235          | -              |          | 280        | 51-          | <b>6</b> 1      | 335           | ST/            | 39              | 38 <u>5</u> | STO                 | 0 <del>6</del> | 435          | +                   |            |
| 36               | 510                | 15               | 86             | *              |           | 130   | 514              | 83                  | ·   1    | 5h           | ¥<br>•*    | **  | 236          | SIZ            | 18       | . 285      | KÜN          |                 | _ <b>3</b> 36 | \$T/           | 46              | 386         | STO                 | 36             | 436          | ST#                 | 33         |
| 37               | RCL                | 53               | 87             | RCL            | 37        | 137   | X()              | - 87                | •   H    | 57<br>       | Ş1+        | 55  | 237          | ST/            | 40       | 287        | FCL          | 49              | 337           | ST/            | 47              | 387         | ST#                 | 37             | 437          | \$T≢                | 39         |
| 38               | STO                | 72               | 88             | RCL            | 17        | ,138  | ŞT#              | 87                  | 1        | 38           | •          |     | 238          | RCL            | 86       | 283        | *            |                 | 338           | ST/            | 57              | 388         | \$                  |                | 438          | RCL                 | 63         |
| 39               | RCL                | 31               | - 89           | ŧ              |           | 139   | ST*              | 37                  | <b>1</b> | 39           | RCL        | 36  | 239          | ST*            | 89       | 289        | ST-          | 52              | 339           | \$T∕           | 58              | 389         | ST+                 | 67             | 439          | ST*                 | 85         |
| 48               | STÚ                | 73               | 9 <del>0</del> | ST*            | 96        | 149   | RCL              | 36                  | 1        | )A (         | RCL        | 45  | 249          | RCL            | 28       | 290        | RCL          | 65              | 349           | ST/            | 76              | 390         | ST+                 | 47             | 448          | ST*                 | 77         |
| 41               | RCL                | 68               | 91.            | RCL            | 19        | 141   | \$T#             | 88                  | - 19     | 91 ·         | *          |     | 241          | *              |          | 291        | RCE          | 62              | 341           | \$7/           | 77              | 391         | 8C1                 | 63             | 441          | 501                 | 51         |
| 42               | ŠT0                | 74               | 92             | ŧ              |           | 142   | STO              | 55                  | 19       | 92 -         | +          |     | 242          | RCL            | 37       | 292        | STO          | 54              | 342           | ST/            | 78              | 792         | STO                 | 32             | 442          | 1                   |            |
| 43               | RCL                | 47               | 93             | RCL            | 89        | 143   | RCL              | 19                  | 1        | 3            | X()        | 45  | 243          | Xt2            |          | 293        | *            |                 | 747           | ST/            | 79              | 707         | CTN                 | 79             | 447          | т.<br>ст.           | 77         |
| 44               | STO                | 77               | 94             |                |           | : [44 | +                |                     | : 19     | )4           | rci        | 33  | 244          | -              |          | 294        | RCL          | 22 <sup>`</sup> | 744           | DC1            | 21<br>21        | 704         | 001                 | 76             | - 4 4 4      | JIT'<br>D <b>ri</b> | 33<br>21   |
| 45               | 119                | 79               | 95             | +              |           | 145   | 2634             | 1                   | 1        | )5 ·         |            |     | 245          | ST/            | 38       | 295        | RCI          | 61              | 715           | 51A            | 91<br>17        | 374         | к                   | (7             | 444<br>144   | KUL<br>DTC          | 01<br>07   |
| 46               | STO                | 78               | 96             | 179            | 18        | 146   | *                |                     | 19       | ) <u>6</u> 1 | PCI.       | 44  | 746          | STZ            | 68       | 296        | ST-          | 54              | 240           | 210            | ۹.)<br>70       | 373         | ₩.,<br>87.          |                | 440          | 210                 | 85         |
| 47               | EL1                | 46               | 97             | CT#            | 24        | 147   | ST+              | 83                  | 10       | 7            | +          | Ŧ   | 247          | Pri            | 00       | 297        | \$T±         | <u>۲</u>        | 340           | KUL            | ()              | 370         | 31+                 | 47 -           | 446          | KUL                 | 72         |
| 40               | CTO                | 70               | 00             |                | 97<br>61  | 142   | I DOT            | Y                   | 10       |              | CT.        | 55  | 540          | DUC            | 07<br>07 | 200        | *            | 99              | 547           | *              |                 | 397         | \$10                | 36             | 447          | *                   | •          |
| 7°               | 500                | 37<br>01         | - 70<br>- 00   | ж              | Ø1        | 140   | 001              | ie                  | 10       | 10 1         | 501        | 40  | 670<br>• 545 | NUL<br>Vag     | ワン       | 200        | -            |                 | 548           | RCL            | 62              | 398         | KCL                 | 61,            | 448          | RCL                 | 85         |
| -7.<br>57        | r37<br>955         | त् :<br>त (      | ; 77           | *<br>1         |           | 150   | м <b>ьь</b><br># | 17                  | 13       | יידי<br>אנגו | 466<br>67. | -77 | 247          | ~12            |          | 677<br>788 | ₹<br>₩/\     | <u></u>         | 349           | RCL            | 47              | 399         | ST+                 | 32             | 449          | ŧ                   |            |
| Эй.              | 75 A               | M 1              | 194            | *              |           | 174   | *                |                     | . 0      | 110 K        |            | ٦ı  | 200          | -              |          | 200        | ** }         | 63              | 350           | STO            | 67              | 488         | ST+                 | 38             | 458          | ST+                 | 82         |

:

Table C-10 (cont.). Print-Out of Program HY

OR THEFT &

|             |                |                |            |                    |                  |            |               |             |                |             |        |               |                 |              |                 |                    |            |                  |               |        |                |                 |            |                | •                  |                  |
|-------------|----------------|----------------|------------|--------------------|------------------|------------|---------------|-------------|----------------|-------------|--------|---------------|-----------------|--------------|-----------------|--------------------|------------|------------------|---------------|--------|----------------|-----------------|------------|----------------|--------------------|------------------|
| 451         | PC:            | 44             | 582        | STA                | 76               | 553        | RCL           | 22          | 694            | ST-         | 74 -   | 655           | -               |              | 796             | RCL                | 23         | 737              | ŧ             |        | 368            | +               |            | 322            | şi≢                | 47 -             |
| 101         | 1123           |                | 805        |                    |                  | 554        | CT± .         | 57          | 405            | 100         | 67     | 656           | STR             | 33           | 797             | STO                | 28         | 758              | 517           | 63     | 889            | ST* -           | 86 -       | 864            | ŞT# -              | 26               |
| 425         | XC 2           | (i)            | 283        | Ŧ                  |                  | JJ         | 01-           |             | 000            | A           |        | /67           | 3               | ••           | 70.0            |                    | •••        | 756              | 001           | 24     | ara            | 07/             | 54         | 941            | 501                | 99               |
| 453         | ST+            | 88             | 504        | RCL                | 22               | 220 :      | 51#           | <i>(</i> b  | 606            | 211         | 68     | 537           | ۷               |              | 183             | -                  | _          | 122              | 566           |        | 017            | 317<br>         | 20         | 001            | 5.51               | 70               |
| 454         | 201            | 62             | 585        | ST#                | A4               | 556        | \$T* -        | 78 -        | 687            | \$T/-       | 74     | 658           | *               |              | 799             | RCL                | 24         | 760              | RUL           | 40     | 911            | S1/             | 57         | 965            | i.                 | 19               |
| 197         | ATA            | 7/             |            | AT.                | 4.5              | 557        | DU.           | 51          | 290            | 201         | 63     | 659           | RCL             | 15           | 71R             | ST#                | 45         | 761              | -             |        | 812            | LAST            | X          | 863 -          | -                  |                  |
| <b>4</b> 00 | 21=            | 76             | 262        | 21+                | 90               | SSI        |               | <b>.</b>    | 000            | 596.<br>574 | e/     | 220           | *               | ••           | 711             | 1.74               |            | 762              | 110           | 48     | 017            | ¥7.19           | ,          | 264            | 0.12               | 57               |
| : 456       | RCL            | 79             | 597        | RCL                | 51               | 228        | Ŧ             |             | 687            | 51*         | 20     | 000           | •               |              | (11             | 114                |            | 702              |               | τu     | 010            | A 71            |            | OCT -          | 5.51               | 40               |
| 457         | *              |                | 588        | *                  | •                | 559        | +             |             | 610            | ST*         | 57     | 661           | 1               |              | 712             | RCL                | <b>8</b> 7 | (0.)             | ,             |        | 814            | /               |            | 862            | Ki sa              | Ŵ.4              |
| 450         | 671            | 07             | 500        | 1                  |                  | 560        | X()           | 76          | 611            | ST*         | 66     | 662           | +               |              | 713             | ST/                | 34         | 764              | ST*           | 47     | 815            | -               |            | 866 -          | RCL                | 47               |
| 9.38        | 317            | 01             | Je7        | T<br>474           | - 4              | 521        | 671           | as -        | 213            | 001         | 74     | 647           | PC              | 24           | 714             | PCI                | 90         | 765              | ST*           | 79     | 816            | \$T#            | <b>A</b> 9 | 367            | -                  |                  |
| 459         | Ş1+            | 83             | 519        | 510                | 54               | 361        | 217           | 6J<br>60    | 012            | XUL         |        | 200           | ATA             | 40           | 117             | AT.                | 4.5        | 762              | DA            | aź     | 017            |                 |            | 020            | ета                | <b>5</b> 0       |
| 468         | RCL            | 78             | 511        | RCL                | 84               | 562        | RCL           | 52          | 613            | ŞT#         | 58     | 664           | \$10            | 48           | 415             | 51*                | 10         | (00              | KL            | 60     | 817            | 2               |            | 000            | 310                | 92<br>           |
| 46          | ST+            | 98             | 512        | PC1                | 65               | 563        | +             |             | 614            | RCL         | 10     | 665           | RCL             | 15           | 716             | *                  |            | 767              | RCL           | 24     | 818            | ST/             | 57         | 869            | KUL.               | 20               |
| 491         | D CH           | 77             | 910        | 5M                 | 53               | 564        | 4T2           | 77          | 415            | PTN         |        | 666           | ST-             | 48           | 717             | +                  |            | 768              | RCL           | 34     | 819            | RCL             | 57         | -87 <u>P</u>   | ST+ -              | 51               |
| 450         | KUL            | 03             | 213        | KLL                | JZ               | 504        | 0.01          | 57          | 010            |             |        | 227           | ,               | -            | 710             | 001                | 47         | 769              | 1             |        | 020            | CT /            | 00         | 271            | 100                | 51               |
| 46.         | ! RCL          | -58            | -514       | *                  |                  | 292        | KUL           | 33          | 6104           | LSC         | 10     | 100           |                 |              | (10             | RUC.               | D (        | 107              | 5.54          |        | 020            | 317             | 97         | 1070           | n yel<br>Aff       | 27               |
| 464         |                |                | 515        | ÷                  |                  | 566        | ST+           | <b>9</b> 5  | 617            | 1           |        | 663           | \$1+            | 40           | 719             | 51 <b>a</b>        | 20         | 118              |               | 24     | 821            | -               |            | 872            | 31-                | 37               |
| 10          |                | 79             | 514        | 071                | 44               | 567        | 801           | 78          | 618            | ST0         | 87     | 669           | ST-             | 60           | 720             | 1                  |            | 773              | ST9.          | 59     | 822            | -97 <b>*</b>    | 86 -       | 873            | RCL                | 87               |
| +0.         | : 01T<br>• 884 |                | - 410      | y1 T<br>- 664      |                  | ezr        | DCI           | 67          | 210            | CT0         | 12     | 676           | *               |              | 721             | 0.03               | 77         | 772              | 201           | 35     | 627            | 201             | Å6         | 874            | ST+                | 07               |
| 46          | RUL            | 65             | - 517      | RUL                | 00               | 100        | RUL.          | 0.5         | 017            | 310         | - 19 M | 0.0           |                 | 51           | 141             | A                  |            | 777              | 6T.           | ΔZ     | 02             | ATA             | 67         | 075            | eta                | 70               |
| 46          | ? ST#          | - 73           | 513        | RCL                | 53               | 569        | KCL           | 23          | 620            | 21Q         | وكر ا  | 6/1           | 21-             | Э <b>н</b>   | 122             | 3:-                | <i>n.</i>  | 113              | ्।≢<br>•≖     | 00     | 824            | 318             | 51         | 073 -          | 611)<br>A <b>T</b> | 02<br>75         |
| 46          | 2 201          | 52             | 519        | *                  |                  | 570        | ST*           | 65          | 621            | 9T0.        | 54     | 672           | 1               |              | 723             | ST/                | ∃e         | 774              | 3T#           | 31     | 825            | ST+             | 57         | 876            | S1-                | 35               |
| 170         | - AV-          | . 07           | E00        | 5.71               | ۵E               | 571        | ¥.            |             | 622            | ST0         | 68     | 673           | STO             | 51           | 724             | +                  |            | 775              | ST×.          | 51     | 826            | RC1             | 99         | 877            | RCL                | 24               |
| 40          | - 514          | 60             | 269        | RUL                |                  | 670        |               | 07          | 253            | 0.01        | 47     | 274           | OT0             | 27           | 705             |                    |            | 775              | 1             | •      | 027            | ern             | 00         | 072            | 2T±                | 47               |
| 471         | 3 *            |                | - 521      | 7                  |                  | 275        | 214           | ήŋ,         | 623            | KUL         | 23     | 0/*           | 210             | Ċ1           | 123             | <u>.</u>           |            |                  |               |        | 021            | 210             | 66         | 017 -<br>070 - | J : -              | 90<br>7 <b>-</b> |
| 47          | l STi          | 81             | 522        | Sī÷                | - 84             | 573        | +             |             | 624            | ST+         | Ŋ7.    | 675           | +               |              | 726             | \$T <b>#</b>       | 87         | 111              | /             |        | 828            | ŧ               |            | 87.4           | el.                | 9.5              |
| 47          | <br>Э. сто     | 1 45           | 523        | DO                 | 46               | 574        | 57+           | 79          | 625            | -           |        | 676           | STA             | 54           | 727             | *                  |            | 778              | ST#           | 86     | 829            | 2 .             |            | <u> 886</u>    | ST+ -              | 32               |
| 75          |                | , 50           | 361        | 5.00               | 10               | 575        | DCI           | 57          | 202            | DC1         | 22     | 677           | 100             | 88           | 729             | CT2                | 12         | 779              | *             |        | 976            | QT <sub>z</sub> | 86         | 881            | ST-                | 59               |
| 47          | s kul          | . 6C           | 524        | - KUL              | . <del>5</del> 0 | 31.0       | RUL AT .      |             | 020            | FUL         | 20     | 270           | AT-             | 51           | 720             | 0.11               | 10         | 706              | DAL           | 74     | 000            | 074             | 00         | 000            | _                  | ••               |
| - 47        | 4 RCL          | . 53           | - 525      | 201                | . 79             | 2/6        | 217           | 23          | 627            | -           |        | 010           | - 31+           |              | (23             | KUL                | 1.5        | (07              | KUL.          | 3.<br> | 331            | 214             | 47         | 002            | -                  |                  |
| 47          | 5 ¥            |                | 52£        | *                  |                  | 577        | RCL           | 65          | 628            | ST≢         | -87    | - 679         | _S⊺#            | 54           | 739             | ST+                | 97         | 781              | \$ <b>1</b> + | Ŵ6     | 832            | 1               |            | 883            | 51*                | 53               |
| 47          | ב סרי          | 47             | 507        |                    |                  | 578        | ST+           | 73          | 629            | STŪ         | 79     | 639           | ST+             | 54           | 731             | RCL                | <u>86</u>  | 782              | St-           | 36     | 833            | STC             | 35         | 884            | RCL                | 24               |
| 71          | η Χίι<br>      | - 0-2<br>- A-1 | JC1<br>    |                    |                  | 670        | DCH           | =           | 270            | 602         | •••    | 201           | CT.             | 69           | 772             | CTO                | 94         | 797              | <b>P</b> 74   |        | 074            | ern             | 54         | 995            | Pri                | 14               |
| - 47        | Z RCI          | 6 84           | 52.        | i XC               | > 100            | 3/7        | RUL           | 30          | 532            | 1.13        |        | 001           | - U I T<br>- AT | 27           | 132             | 919<br>67.         | 00         | 704              | 4             |        | 0.J=           | 310             |            | 007            |                    | • -              |
| 47          | Ş 🔹 .          |                | 525        | ) ST(              | ) 25             | 588        | Şī÷           | 78          | 631            | <u>S10</u>  | 47     | 682           | 51-             | Ðí.          | 733             | \$1#               | ₩Z.        | 784              | !             |        | 832            | RUL             | 4J         | 565            | -                  |                  |
| 47          | 9.37           | + 43           | 575        | a str              | 1 78             | 581        | RCL           | -54         | 632            | RCL         | 21     | 683           | Rt              |              | 734             | RCL                | 11         | 785              | ST0           | 28     | . 836          | ST-             | 68         | 887            | ST/-               | 68               |
| 10          | 5 I.           | •              |            | 50                 | 52               | 582        | STO           | 56          | 477            | CT/         | 97     | + 684         | ST+             | 51           | 775             |                    |            | 786              | ST0           | 46     | 877            | 201             | 52         | 888            | RCL                | 57               |
| 90          | елт<br>        |                | : 331      | 1 KL1              |                  | 502        | 0.00          | 20          | 0.J-J<br>2-7.A | 501         | 07     | 100           | - CT_           | 54           | 776             | етл                | 52         | 797              | 4             |        | 070            | CT+             | 67         | 294            | DTU                |                  |
| 48          | 1 51           | + #3           | 534        | 2 RUI              | 62               | 38.3       | RUL           | 50          | 634            | XUL         | 57     | 000           | 31-             | 20           | 100             | 310                | 30         | 700              |               | 37     | 0.00           | 31-             |            | 002            | 1.07               |                  |
| - [ 49      | 2 RC           | L 34           | 53         | 3 RCI              | L 59             | - 584      | STO           | -51         | 635            | ST+         | 87     | - 685         | RCI             | 68           | 737             | RUL                | 21         | 785              | 517           | 99     | 839            | RCL             | 34         | 8ÀÑ+           | LUL                | 10-              |
| 49          | 3 ST           | + 99           | 53         |                    |                  | 585        | ST*           | - 54        | 636            | RCL         | 24     | 687           | ' \$T+          | 45           | 738             | RCL                | 67         | 789              | 1             |        | 848            | -               |            | 891            | RCL                | 11               |
| 40          | A CT.          | 1 10           | - <u> </u> | F 1                |                  | 586        | ST#           | 75          | 677            | 4           |        | 688           | ST/             | 45           | 739             | ST/                | 86         | 790              | RCL           | 86     | 841            | RCI             | 36         | 892            | STO                | 81               |
| 90          | 4 31           | T 97           | - 33       | 3 <b>T</b>         |                  | 507        | 001           | 74          | 230            | -           |        | 200           | DCI             | 54           | 740             |                    | ••         | 791              | STO           | 89     | 043            | 7               | ••         | 997            | Dri                | 12               |
| - 48        | 15 RC          | L 61           | 53         | <u>5</u> ST        | + 46             | 180        | KUL           |             | 638            | Ŧ           |        | 007           | RUL             | - 37<br>- 45 | 190             | •                  |            | 1 700            | 010           | 60     | 042            | <u></u>         |            | 075            | ~ UL<br>A7A        | 12               |
| - 48        | 16 RC          | 1 57           | 53         | 7 RC               | L 22             | 588        | STO           | 52          | 639            | *           |        | 698           | 1.214           | +3           | - 741           | +                  |            | 172              | 510           | 34     | . 843          | 51*             | 31         | 874            | 310                | カビ               |
| 45          | 7 *            |                | 53         | 8 RC               | 1 57             | 589        | RCL           | 64          | 640            | ST+         | - 54   | 691           | . ST+           | - 51         | 742             | ST+                | 19         | 793              | 1/X           |        | - 844          | ST-             | 46         | 895            | RCL                | 13               |
|             | 0 01           | 1 77           | . 53       |                    | - •              | 590        | ST            | 51          | 641            | 201         | 54     | 692           | RCI             | 67           | 743             | RCI                | 28         | 794              | RCL           | 45     | 845            | ST-             | 47         | 896            | STO                | 83               |
|             | 00 31          | r 31<br>       |            | 7 <b>-</b><br>~ ~- |                  | 570        | 6T-           | , 53        | 110            | 070         | 10     | 207           | ¥42             | 1            | 744             | 074                | 97         | 705              | 1/1           | -      | 946            | CT+             | 51         | 997            | FU.                | 14               |
| - 48        | VA KC          | L 61           | - 54       | 0 SI               | + 36             | - 771      | 214           | <u> </u>    | 044            | 510         | 3      | 073           |                 |              | 5 <b>11 1</b> 1 | 317                | 61<br>84   | 702              | 17 A          | 57     | 070            | J[≠<br>∧=       | 71         | 071            | ATA                | 67               |
| 49          | HO RC          | 1 51           | - 54       | 1 RC               | 1 71             | 592        | STO           | 1 57        | 643            | RCL         | . 12   | 694           | 5               |              | 745             | RCL                | -24        | 196              | 210           | 37     | 847            | \$I-            | 79         | 898            | 510                | 94               |
| 4           | 1 .            |                | 54         | 2 ST               | - 22             | 593        | STO           | 58          | - 644          | 1/X         | 1      | 695           | <b>*</b>        |              | 746             | RCL                | 14         | 797              | ŧ             |        | 848            | 2               |            | 899            | RCL                | 15               |
|             | 12 07          | 1 74           | 57         | 7 67               | 1 25             | 594        | 201           | 14          | 415            | PCI         | 17     | 696           | ST:             | 45           | 747             | STA                | 68         | 798              | 4             |        | - 849          | ST*             | 88         | 980            | STD                | 85               |
| •           | 76 31          | T 31           |            | 0 31               | 7 03             | 977<br>605 |               |             |                | VAA         |        | 201           | , 644           | 15           | 740             | ,                  |            | 700              | ¢T≠           | 51     | 05D            | DCI             | 27         | 001            | שדם                |                  |
| 4           | 93 RC          | ,L 7€          | 54         | 4 RC               | L 76             | 222        | i XUL         | . 44        | 646            | XT2         |        | 670           | KU              | . 4J         | 140             | /                  |            | 177              | -214<br>AT=   | 77     | 929            | KLL             | 23         | 701            | K 1 (P)<br>1 (R)   | <b>A</b> 4       |
| 4           | 94 ST          | + 38           | 54         | 5 RC               | L 65             | 596        | 1             |             | 647            | ' RCL       | . 11   | , <b>6</b> 98 | s RCI           | . 51         | -749            | STO                | 63         | 866              | \$10          | 56     | 851            | RCL             | 23         | 90Z+           | LBL                | 81               |
| 4           | 95 PC          | 1 78           | 54         | 6 51               | * 57             | 597        | ' ST/         | 68          | 649            | 11          |        | 69            |                 |              | 750             | RCL                | 96         | 881              | 1.            |        | 852            | +               |            | : 983          | RCL                | 37               |
|             | 02 61          | 11 7'          | , er       | ~ VI               |                  | 500        | ŚT.           | 74          | 210            | - (         |        | 796           | a sta           | 45           | 751             | <b>PC</b>          | 67         | 882              | RCI           | 87     | 1857           | ST#             | 45         | 984            | X                  | 21               |
| ¶'          | 70 31          | IT 34          | 24         | 1 21               | ÷ 33             |            | , 117<br>     |             | 0-7            |             |        | 76            | 001             | 17           |                 | د الاست.<br>المرية |            | 007              | CT-           | 5.     |                | AT.             | 70         | 005            | CTR                | 77               |
| - 4         | 97 R(          | L 6            | 54         | 18 ST              | * 79             | 1.522      | KU            | - 67        | 658            | • •         |        | 10            | I KUL           | . 13         | 132             | 17.2               | •          | .003             | - <b>21</b> 4 | 71     | . 824          | 21+             | 17         | 700            | 310                | 31               |
| 4           | 98 R(          | 1 6            | 3 54       | 9 R                | 1 63             | 688        | i CHS         | 5           | 651            | STO         | ) 10   | 70/           | e sti           | ) 31         | 753             | +                  |            | <sub>्</sub> 894 | XT2           |        | 855            | - 7             | •          | 906            | KCL                | 38               |
|             | 4 99           |                | 5          | ₩ +                |                  | 681        | ST            | r 68        | 652            | *           |        | 70            | 3 ST            | + 31         | 754             | ST+                | 63         | 805              | RCL           | 18     | 856            | ST+             | 47         | 987            | XC                 | 24               |
| _           | // ·           | T. 7           |            |                    | r                | 201        | ) ст.         |             | 25             | . ori       | 15     | 79            | CTO A           | 1 51         | 755             |                    |            | 296              | ST#           | 86     | \$57           | PCI             | 74         | 940            | STO                | 38               |
| ्२          | nn 2           | (≠ 3)<br>      |            | 1.2                | + 23             | , 004      | , 91°<br>1 64 | . 90        | 0.33           | , KLL       |        | 70            | 1 J11<br>5 D74  | 1 67         | 100             |                    |            | 1007             | ,             |        | - UJ(<br>- 848 | AT-             | 10         | 000            | DTU                | ~~               |
| 5           | 91 R(          | CL 9           | <u>ب</u>   | j2 🔹               |                  | 683        | 5.214         | <b>1</b> 74 | 654            | : (/)       | ĸ      | (15)          | 2 211           | 1 25         | - 756           | 1.                 |            | : 201            | 1             |        | 808            | 214             | 46         | 202            | F 1 M              |                  |

# ORIGINAL PAGE IS OF POOR QUALITY

4

i

.

Table C-ll. Print-Out of Program HZ

| e:   | +LBL           | •H          | ZX* 5        | FI F         | 57 B          | 2. 10        | 1 X            | > 8          | 6 15 | 1 ST           | * 71           | 28          | t ST                  | 0 18             | 25    | L ST              | <b>*</b> 38 | . 301      | ST+       | - 54                                   | <u>े उ</u> डा        | *                  |             | 491             | ST±            | 791        |
|------|----------------|-------------|--------------|--------------|---------------|--------------|----------------|--------------|------|----------------|----------------|-------------|-----------------------|------------------|-------|-------------------|-------------|------------|-----------|----------------------------------------|----------------------|--------------------|-------------|-----------------|----------------|------------|
| R.   | SF .           | 01          | 5            | 52 XE        | 9 81          | ! <u>;</u> # | 2 ST           | * Bi         | 6 15 | 2 RC           | L 44           | 28          | 2 ST                  | 0 68             | 252   | ST.               | / 63        | 382        | _         | -                                      | 352                  | ST+                | 47          | 492             | -10            | 27         |
| ,83  | - GT(          | ) -H        | 2• 5         | DE XE        | 9 16          | 9 te         | 3 ST           | * 8          | 9 15 | 3 *            | •              | 20          | 3 RCI                 | L 86             | 257   | 1 201             | 39          | 383        | STO       | Â                                      | 757                  |                    |             | - 70C<br>107    | AUL<br>CT-     | 741        |
| -    | +181           | . •N        | ZY* 5        | 54 FS        | ? 81          | 10           | 4 - RC         | 1 2          | 7 15 | 4 ST           | + 35           | 28          | 4 PCi                 | AA               | 254   |                   | 6           | 794        | STO       | 7                                      | 754                  | 201                | 21          | 404             | - 21+          | 34         |
| e.   | SF SF          | 92          | 5            | IS XE        | 0 81          | 19           | 5 14           | 5 6          | 15   | 5 80           | 1 87           | 28          | 5 .                   |                  | 250   | , 101<br>7        | - 00        | 785        | Dri       | 89                                     | - 207<br>755         | CT-                | 001         | 404             | KLL            | 78         |
| ંક્ષ | -LBL           | - H)        | Z• 5         | 6 CF         | 01            | 18           | 6 ±            |              | 15   | 6 97           | + 99           | 20          | E Pri                 | 77               | 254   | . ECI             | 10          | 794        | CT/       | 85                                     | 333<br>1757 (        | 014                | 77          | 400             | *              |            |
|      | . 00           | 11          | 5            | 7 CF         | 82            | 10           | о –<br>7 ст.   | 1 30         | 15   | 7 00           | 1 00           | 20          | 7 DC:                 | - 37<br>- 47     | 200   | 5 KUL<br>7 -      | . 10        | 767        | - Q17     | - 0J.<br>- 7f                          | 300                  | KLL                | 37          | 486             | RCL            | 88         |
|      | E STO          | 37          | Š            | 2 20         | 1 16          | 10           | יק, א<br>ה ו ה | τ ()<br>6τν  | 1 13 | r KU:<br>D DC: | 1 10           |             | - KUL<br>1 -          | . 0.)            | 231   | * *<br>• **       |             | 301        | 317       | - 31                                   | - 357                | XC                 | 31          | 407             | ŧ              |            |
| -    | 172 6          | 1 72        | 5            | Q QT         | 6 77          | 10           | 0 LH.<br>1 AT  | 91A<br>• 77  | 13   | 0 XU:<br>D AT. | - 10<br>- 10   | 200         | . <b>.</b>            |                  | 200   | 517               | 61          | 306        | 51/       | 21                                     | . 328                | SIU                | 84          | 408             | RCL            | 61         |
| 16   | 2 501          | ) ap        | 2            | 0 CT         | 0 33<br>6 72  | 10           | 7 31           | t 3(<br>- Er | 13   | 2 31           | 48             | 25          | ; -<br><del>.</del> . |                  | 259   | ( X( )            | 10          | 393        | 51/       | 32                                     | 359                  | ST#                | 31          | 409             | ST*            | 78'        |
|      | YE             | 1 01        | 6            | 0<br>1 ст    | 0 30<br>71 21 | 110          | 5 X(.)         | 1 33         | 10   | 5 t<br>1 1001  |                | 20          | 310                   | । ওল<br>জনসংগ্ৰ  | 260   | RUL               | . 61        | 310        | 517       | - 33                                   | 368                  | STO                | 33          | 410             | RCL            | 77         |
| 44   | - AC           | 1 10        | 2            | 1 91<br>9 CT | V Di<br>- 22  | 11           |                |              | 10.  |                | - 63           | 21          | 510                   | 1 26             | 261   | *                 |             | 311        | \$12      | 68                                     | 361                  | *                  |             | 411             | *              |            |
| 14   | - AZ4<br>- A70 | 15<br>5 EQ  |              | 231          | * 00          | 111          | 2 51           | + 66         | 16   | : *            |                | 212         | : RCL                 | . 28             | 262   | ST-               | - 63        | 312        | ST/       | 70                                     | . 362                | ST+                | e1 _        | 412             | +              | ļ          |
|      | ) 310<br>1 070 | ; 30        |              | 31           |               | П            | S RCL          | . 19         | 16   | S ST           | · 35           | 213         | RCL                   | . 89             | 263   | RCL               | 61          | 313        | ST/       | 72                                     | 363                  | +                  |             | 413             | STO            | 48         |
| 14   | ະ ຽະໄ<br>- ສາ  | ) /b<br>^/  | , b'         | 4 KL         | E 26          | 114          | I RCL          | . 84         | 164  | RCL            | . 33           | 214         | *                     |                  | 264   | RCL               | . 62        | -314       | ST/       | 73                                     | 364                  | STO                | 41          | 414             | RCL            | 61         |
| 1    | i Kul          | . 80<br>    | 5            | 5 51         | 0 41          | 115          | 5 <b>*</b>     |              | 165  | RCL            | . 63           | 215         | PCL                   | - 68             | 265   | RCL               | . 25        | 315        | \$T7      | 74                                     | 365                  | RCL                | 61          | 415             | RCL            | 62         |
| - 10 | 5 XC           | 2 191       | 6            | 6 ST         | + 41          | 116          | 5 ST1          | F 06         | 166  | i ST∢          | • 55           | 216         | Xt2                   |                  | 266   | *                 |             | - 316      | RCL       | 67                                     | 366                  | RCL                | 46          | 416             | 37*            | 78         |
| 1    | 7 510          | <u>) 11</u> | 6            | 7 CO         | 5             | 117          | ' STA          | - 20         | 167  | <b>`</b> ‡     |                | 217         | -                     |                  | 267   | ST-               | 61          | 317        | ST/       | 39                                     | 367                  | STO                | Й6          | 417             | 4              |            |
| 1    | s RCL          | . 07        | - 68         | B X1:        | 2             | 118          | PCL            | . 66         | 168  | i RCL          | . 19           | 218         | ST/                   | 10               | 268   | RDN               |             | 318        | 577       | 46                                     | 368                  | STO                | 36          | 219             | ст.            | 77         |
| 19   | 120            | 82          | - 69         | 9 STI        | 3 22          | 115          | ST-            | - 34         | 169  | RCL            | . 42           | 219         | ST/                   | 48               | 269   | RCL               | 48          | 319        | ST/       | 47                                     | 369                  | ST#                | 37          | 419             | CT±            | 70         |
| -20  | 370            | 12          | - 76         | ð Sti        | * 36          | 128          | ST.            | . 35         | 179  |                |                | 220         | RCL                   | 86               | 270   | *                 | -           | 329        | ST/       | 57                                     | 779                  | ±.                 | •           | 220             |                | 57<br>67.  |
| -21  | RCL            | . 83        | - 71         | 1 574        | × 61          | 121          | ST+            | 59           | 171  | ST+            | - 55           | 221         | ST*                   | 89               | 271   | ST-               | 62          | 32 :       | ST/       | 53                                     | 771                  | ST+                | Ø7          | 101             | сці<br>Ста .   | 00:<br>05: |
| -22  | : \$70         | 13          | - 72         | 2: ST4       | × 61          | 122          | RCL            | 32           | 172  | +              |                | 222         | RCL                   | 28               | 272   | RCL               | 63          | 322        | ST/       | 76                                     | 772                  | et.                | <u>₹</u> 7  | 961<br>155 -    | 717 (<br>71    | 83)<br>77  |
| 23   | J RCL          | - 89        | - 73         | S ST         | 66            | 123          |                |              | 173  | RCL            | 36             | 223         | *                     |                  | 277   | PCI               | 60          | 323        | ST.       | 77                                     | 777                  | DC:                | 27          | 966 -           | bt≖<br>notii   | //<br>=•   |
| 24   | E X()          | - 94        | 74           | 1 ST(        | 75            | 124          | 31+            | - 86         | 174  | PC             | 45             | 524         | 201                   | 37               | 274   | CTO               | 54          | 724        | 372       | 78                                     | 9(0)<br>774          | 56 <u>5</u><br>Ста | 00<br>70    | 923 I<br>101    |                | 51         |
| 23   | i sta          | 14          | 75           | 5 -          |               | 125          | ST+            | 28           | 175  | STa            | 77             | 225         | 242                   |                  | 275   | *                 |             | 725        | CT.       | 79                                     | 3(4)<br>775          | 310<br>070 -       | 36<br>70    | 424 :           | F<br>          |            |
| 23   | RCL            | . 88        | - 76         | ST.          | 33            | 126          | pri            | 10           | 176  | *              |                | 226         | _                     |                  | 276   | -<br>001          | . 22        | 722        | 501       | 13.<br>Z1                              | 310                  | 510 -<br>561 -     | 38          | 423             | 51+ .          | 33         |
| 27   | STO            | 71          | 77           | · ST0        | 1 65          | 120          | ECI            | <br>21       | 177  | 4.<br>4        |                | 227         | CT/                   | 70               | 210   | RUL<br>DOT        | 20          | 707        | CTO       | 91<br>47                               | 275                  | KUL                | 14          | 426 i           | CL (           | 51         |
| 23   | RCL            | 63          | 73           | ST           | 66            | :20          | - NUC<br>- #   | <b>6</b> 1   | 176  | CT6            | 45             | 220         | 077                   | 20               | 277   | RUL<br>CT         | 51<br>Ex    | 327<br>700 | 919<br>6M | 70<br>70                               | 377 3                | <b>.</b>           |             | 427 (           | STO 8          | 33         |
| 29   | STO            | 42          | 70           | ST-          | 78            | 120          | -<br>          | 00           | 170  | 010            | 77             | 220         | 517                   | 00<br>00         | 2(0   | 317               |             | 320        | RLi.      | (7                                     | 3/8 3                | 51÷ 4              | 4/ .<br>    | 428 5           | ICL 7          | 2          |
| 30   | RCL            | 45          | - 80         | 242          |               | 127          | DEL            | 07           | 100  | СТ.            | 55             | 227         | BUL<br>DOL            | 07               | 2(9   | 51*               | 60          | 327        | #<br>D/01 |                                        | 379-3                | 510 :              | jň ,        | 4 <u>29</u> . • | <b>.</b>       |            |
| 31   | STO            | 44          | Q1           |              |               | 100          | - RUL<br>- CTA | 00           | 100  | 001            | -J-J<br>- 40   | 230         | KLL                   | 83               | 286   | *                 |             | 335        | NUL       | 6 <u>2</u>                             | 388 1                | act (              | 51 -        | 430 F           | CL 0           | 15         |
| .32  | 901            | 51          | 02           | ern          | 77            | 101          | 310            | 93           | 101  | KUL            | 40             | 231         | XTZ                   | 1                | 281   | +<br>             | ••          | 331        | KUL       | 4:<br>                                 | 381 3                | 51+ 3              | 32 4        | (31-)           | •              |            |
| 77   | ST0            | 78          | 07           | 510          | 40            | 132          | KLL            | 33           | 182  | KILL           | $\alpha$       | 232         | -                     |                  | 282   | X()               | 22          | 332        | 510       | 8. ·                                   | 382 9                | ;T+ 3              | 38.4        | 132 9           | 7+ 8           | 12         |
| 74   | ויהפ           | 52          | 00<br>94     | RUL<br>CT-   | 10            | 133          | 51*            | 83           | 183  | +<br>57.       |                | 233         | SIZ.                  | 25               | 283   | RCL               | 62          | 333        | 516       | 09<br>                                 | 383 F                | ICL 6              | 15 4        | 133 R           | CL 4           | 4          |
| 75   | - 465          | 25          | 05           | 317          | 30            | 134          | X<>            | - 167        | 184  | 51+            | 37             | 234         | Si/                   | 5 <del>6</del> ( | 284   | *                 |             | 334        | STO '     | 59                                     | 384 +                |                    | 4           | 134 X           | <> 7           | 7          |
| 72   | 676            | 9J<br>151   | - 00<br>- 07 | T<br>070     | 64            | 135          | 51*            | 87           | 185  | KCL            | 37             | 235         | RCL                   | 28               | 285   | ŞT+               | 65          | 335        | Ż         |                                        | 385 R                | CL 6               | 2 4         | 135 S           | T+ 8           | 8          |
| 30   | - 310<br>- DCI | 11          | 00           | 210          | 20            | 136          | STO            | 48           | 186  | RCL            | 89             | 236         | STO                   | 62               | 286   | RCL               | 29          | 336 -      | +         |                                        | 386 S                | TO 8               | 8 4         | 36 ₽            | CL 6           | 2          |
| 31   | RUL<br>CTO     | 70          | 87<br>       | KUL          | 10            | 137          | ST*            | 37           | 187  | *              |                | 237         | CHS                   |                  | 287   | RCL               | 35          | 337 :      | sto ·     | 49                                     | 387 P                | CL 7               | 3 4         | 37 S            | T* 7           | 6          |
| 30   | 210            | 72          | 88           | KUL          | 17            | 138          | RCL            | - 36 ]       | 188  | RCL            | <del>8</del> 3 | 238         | STO                   | 63               | 288   | /                 |             | 338        | RCL I     | 63 .                                   | 388 S                | T# 3               | 2 4         | 38 R            | CL 7           | 9          |
| 37   | XUL            | 31          | 89           | 51+          | 36 :          | 139          | ST*            | 88.          | 189  | RCL            | 83             | 239         | RCL                   | 25               | 289   | STO               | 64          | 339 9      | ST# (     | 87.1                                   | 389 *                | • •                | 4           | 39 *            |                | -          |
| 40   | 510            | 13.         | 98           | \$1+         | 61            | .140         | STO            | 55           | 190  | *              |                | 54 <u>8</u> | rcl                   | 37               | 298 : | ST*               | 75          | 348 3      | STO (     | 37 .                                   | 390 S                | TC 0               | 24          | 48 5            | T+ 8'          | 7          |
| 41   | RUL            | 68          | - 91         | +            |               | 141          | *              |              | 191  | -              |                | 241         | *                     |                  | 291   | RCL               | 41          | 341        |           | 53 (                                   | 391 +                |                    |             | 41 0            | T+ 9           | 9          |
| 42   | STO            | 74          | 92           | STO          | 34            | 142          | ST+            | 83           | 192  | STO            | 25             | 242         | RCL -                 | 56               | 292   | SIN               |             | 342 5      | 570 8     | 21                                     | 392 2                | CL 6.              | 3           | 42 D            | 1 7            | é l        |
| 43   | RCL            | 47          | 93           | RCL          | 18            | 143          | RCL            | 19           | 193  | STO            | 49             | 243         | RCL                   | 88               | 293   | ST*               | 54          | 343 9      | ste d     | 13 :                                   | 393 R                | CL 7               | 2 4         | 47 €'           | ra du          | 9.<br>9.   |
| 44   | STO            | 77          | 94           | +            |               | 144          | RCL            | 82           | 194  | RCL            | 83             | 244         | <b>*</b>              |                  | 294   | ŧ                 | -           | 344 4      | r i       |                                        | 394 ±                |                    |             | 70 0<br>44 Di   | 1 84<br>1 21   | 7<br>7     |
| 45   | RCL            | 79          | 95           | XC>          | 89            | 145          | *              |              | 195  | RCL            | 28             | 245         | ŧ                     |                  | 295   | ST+ :             | 22          | 345 4      | sta 4     | 14                                     | 195 +                |                    | ,           | KU<br>16 D4     | ין פי<br>אן פי | 2 :<br>5.  |
| 46   | STO            | 78          | 96           | X( )         | ĸ             | 145          | ST+            | 63           | 196  | * .            |                | 246         | ST- :                 | 28               | 296 ( | 57-               | 65          | 346 5      |           | 2                                      | 196 01               | re 41              | +<br>ر د ر  | 70 Kl<br>27 ±   | .L JI          | <b>9</b> 1 |
| 47   | RCL            | 46          | 97           | \$70         | 55            | 147          | ST+            | 98           | 197  | RCL            | 37             | 247         | RCL                   | 29               | 297 ( | STO :             | 71          | 347 9      | :T# 6     | 1                                      | 192 Q1<br>197 Q1     | 10 110<br>11 ∡44   | . 4.<br>    | 40, X<br>/- /-  |                |            |
| 48   | STO            | 39          | 98           | ST#          | 26            | 148          | RCL            | 59           | 153  | RCL            | 88             | 242         | 577                   | ()<br>()         | 298   |                   | 71          | 349 0      |           | -                                      | .» К.<br>199:11      | /6 71<br>[0 7/     | . 4.<br>( ) | •• )!<br>•• ••  | (* 3)<br>4 21  | 7          |
| 49   | F\$?           | 8:          | 99           | X{}Y         | •             | 145          | ST+            | 37           | 193  | *              |                | 240         |                       | 50               | 299 1 | $\mathcal{U}_{i}$ | 52          | 745 s      |           | ·· · · · · · · · · · · · · · · · · · · | 100 V                | 1.70               | • 44.<br>}  | 95 R.<br>40 CT  | 1. D.          |            |
| 50   | XEO            | 81          | 100          | ST9          | 25            | 156          | RCI            | 19           | 299  | -              |                | 256         |                       |                  | 296 5 |                   | 75          | 756 2      |           |                                        | 077 AN<br>202 AN     |                    | <u>د</u>    | 45 57           | • 73           |            |
|      |                |             |              |              |               |              |                | • •          |      |                |                | 4 Y S       |                       |                  |       |                   | 1 . f       | 000 5      | M6. 17    | - C - 4                                | - <b>5</b> - 5 - 5 - | - NC               | - <b>4</b>  | 54 PC           | 9 52           | ,          |

Table C-11 (cont.). Print-Out of Program HZ

1. <sub>1</sub>1. 1. 1.

#### Table C-12. Print-Out of Program HYZ

> ORIGINAL PAGE IS OF POOR QUALITY

1997

Table C-12 (cont.). Print-Out of Program HYZ

Table C-13. Operational Instructions for HY, HZ, and HYZ. (Size 80 registers.)

÷

| Inputs                              |                  |                                             |                    |      |                         |       |    |
|-------------------------------------|------------------|---------------------------------------------|--------------------|------|-------------------------|-------|----|
| Filament properties                 |                  |                                             | MAI                | N    | Н                       | YBRID |    |
| Longitudinal Young's modulus        |                  | E                                           | f <sub>l</sub> st  | 0 01 | EfL2                    | STO   | 11 |
| Transverse Young's modulus          |                  | E                                           | f <sub>w</sub> st  | 0 02 | E <sub>fw2</sub>        | STO   | 12 |
| Longitudinal Poisson's ratio        |                  | ν                                           | 'f_lw              | 0 03 | -<br><sup>ر f</sup> LW2 | sto   | 13 |
| Longitudinal shear modulus          |                  | G                                           | f ST               | 0 04 | G <sub>f</sub> LW2      | STO   | 14 |
| Transverse shear modulus            |                  | G                                           | f <sub>TW</sub> ST | 0 05 | G <sub>f</sub> TW2      | STO   | 15 |
| Matrix properties                   |                  |                                             |                    |      |                         |       |    |
| Young's modulus                     |                  | E_                                          | STO 2              | 1    |                         |       |    |
| Poisson's ratio                     |                  | ν_                                          | STO 2              | 3    |                         |       |    |
| Shear modulus                       |                  | G <sub>m</sub>                              | STO 2              | .4   |                         |       |    |
| Volume fraction reinforcement (tota | al)              | vf<br>v <sub>f</sub>                        | STO<br>(1)         | 00   |                         |       |    |
| Volume fraction in 12-direction     | on               | $\frac{112}{v^{f}}$                         | STO                | 16   |                         |       |    |
| Volume fraction in l-direction      | n <sup>(2)</sup> | $\frac{\mathbf{v}_{f_{1}}}{\mathbf{v}_{f}}$ | STO                | 17   |                         |       |    |
| Volume fraction in 2-direction      | l                | $\frac{\mathbf{r}_2}{\mathbf{v}_f}$         | STO                | 18   |                         |       |    |
| Volume fraction in 3-direction      | ı                | $\frac{r_3}{v_f}$                           | STO                | 19   |                         |       |    |
| Angle of skew direction, deg.       | $\phi$           | STO                                         | 26                 |      |                         |       |    |
| Applied stresses                    | σ <sub>x</sub>   | STO                                         | 27                 |      |                         |       |    |
|                                     | $\sigma_{\rm v}$ | STO                                         | 28                 |      |                         |       |    |
|                                     | τ <sub>xy</sub>  | STO                                         | 29                 |      |                         |       |    |

Table C-13.(cont.) Operational Instructions for HY, HZ, and HYZ. (Size 80 registers.)

#### <u>Outputs</u>

See table C-14.

#### <u>Notes</u>

,

(1) 
$$\frac{v_{f_{12}}}{v_{f}} + \frac{v_{f_{1}}}{v_{f}} + \frac{v_{f_{2}}}{v_{f}} + \frac{v_{f_{3}}}{v_{f}} = 1$$

(2) 1-direction = x- direction, 2 - = y, 3 - z.

Table C-14. Operational Instructions for UNI. (Size 45 registers.)

. F

•

1

#### <u>Inputs</u>

| Filament properties                       |                                 |       |    |
|-------------------------------------------|---------------------------------|-------|----|
| Longitudinal Young's modulus              | $E_{f_{T}}^{(1)}$               | STO   | 11 |
| Transverse Young's modulus                | $E_{f_u} = E_{f_i}$             | STO   | 12 |
| Longitudinal Poisson's ratio              | νLW                             | STO   | 13 |
| Longitudinal shear modulus                | G <sub>f,,,</sub>               | STO   | 14 |
| Transverse shear modulus                  | G <sub>f<sub>TW</sub></sub> (2) | ) sto | 15 |
| Matrix properties                         |                                 |       |    |
| Young's modulus                           | E <sub>m</sub> <sup>(1)</sup>   | STO   | 21 |
| Poisson's ratio                           | ν<br>                           | STO   | 23 |
| Shear modulus                             | G <sub>m</sub> <sup>(3)</sup>   | STO   | 24 |
| Volume fraction reinforcement             | v <sub>f</sub>                  | STO   | 00 |
| Outputs                                   | -                               |       |    |
| Longitudinal Young's modulus of composite | E <sub>L</sub>                  | RCL   | 10 |
| Transverse Young's modulus                | Ew                              | RCL   | 20 |
| Longitudinal Poisson's ratio of composite |                                 | RCL   | 30 |
| Tranverse Poisson's ratio of composite    | ν <sub>TW</sub>                 | RCL   | 40 |
| Longitudinal (in-plane) shear modulus     |                                 |       |    |
| of composite                              | G <sub>LW</sub>                 | RCL   | 35 |
| Transverse shear modulus of composite     | G <sub>TW</sub>                 | RCL   | 45 |

# <u>Note</u>

(1)  $\dot{E}_{f_L} > E_m$ 

(2) Filaments assumed transversely isotropic. - i.e.  $G_{f_{TW}} = \frac{E_{f_{W}}}{2(1+\nu_{TW})}$ 

(3) Matrix assumed isotropic: - i.e. 
$$G_m = \frac{E_m}{2(1 + \nu_m)}$$

Table C-15. Outputs from HY, HZ and HYZ

| Register           | 00                                                           | 10                                    | 20                        | 30                                                           | 40                                   | 50                                                            | 60                    | 70                                 |
|--------------------|--------------------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|-----------------------|------------------------------------|
| Output             | <sup>v</sup> f                                               | Е <sub>х</sub>                        | Е <sub>у</sub>            | Ez                                                           | ٧xy                                  | ν <sub>yz</sub>                                               | ۲<br>zx               |                                    |
| Register<br>Output | 01<br><sup>o</sup> f <sub>1</sub> T                          | 11<br><sup>E</sup> f <sub>L</sub>     | 21<br>E <sub>m</sub>      | 31<br>″f <sub>1</sub> L                                      | 41<br>°f <sub>1w</sub>               | 51<br><sup>7</sup> f <sub>llW</sub>                           | 61<br><sup>¢</sup> x  | 71<br>-                            |
| Register<br>Output | 02<br><sup>0</sup> f2 <sub>T</sub>                           | 12<br>E <sub>fw</sub>                 | 22<br>*s <sub>L</sub> -   | 32<br>″ <sub>f2L</sub>                                       | 42<br><sup>°f</sup> 2 <sub>W</sub>   | 52<br>′f <sub>2LW</sub>                                       | 62<br><sup>¢</sup> у  | 72                                 |
| Register<br>Output | 03<br><sup>0</sup> f <sub>3</sub> w <sub>x</sub>             | 13<br><sup>V</sup> f <sub>LW</sub>    | 23<br>س                   | 33<br>″f <sub>3</sub> L                                      | 43<br><sup>o</sup> f <sub>3</sub> wy | 53<br>-                                                       | 63<br><sup>¢</sup> z  | 73<br>-                            |
| Register<br>Output | 04<br><sup>o</sup> f <sub>12</sub> <sup>+</sup> <sub>T</sub> | 14<br>G <sub>f</sub> LW               | 24<br>G <sub>m</sub>      | 34<br><sup>σ</sup> f <sub>12</sub> <sup>+</sup> <sub>L</sub> | 44<br><sup>o</sup> f <sub>12</sub> + | 54<br><sup>7</sup> f <sub>12</sub> <sup>+</sup> <sub>LW</sub> | 64<br>7 <sub>ху</sub> | . 74<br>-                          |
| Register<br>Output | 05<br><sup>0</sup> f <sub>12</sub> -<br>T                    | 15<br><sup>G</sup> f <sub>TW</sub>    | 25<br>° <sub>m12</sub> _L | 35<br>G <sub>xy</sub>                                        | 45<br>G <sub>yz</sub>                | 55<br>G <sub>zx</sub>                                         | 65<br>-               | 75<br><sup>7</sup> f <sub>12</sub> |
| Register           | 06                                                           | 16<br>X-                              | 26                        | 36                                                           | 46                                   | 56                                                            | 66                    | 76                                 |
| Output             | σ <sub>m</sub> 12 <sup>+</sup> T                             | v <sub>f</sub>                        | ¢                         | σ <sub>m</sub> 12 <sup>+</sup> L                             | σ <sub>m12</sub> +<br>w              | <sup>7</sup> m12 <sup>+</sup> <sub>LW</sub>                   | "m12 <sup>+</sup> LW  | σ <sub>f<sub>12</sub></sub>        |
| Register           | 07                                                           | 17<br>V                               | 27                        | 37                                                           | 47                                   | 57                                                            | 67                    | 77                                 |
| Output             | σ <sub>m-1</sub> T                                           | $\frac{\frac{v_{f_1}}{v_{f}}}{v_{f}}$ | σ <sub>x</sub>            | σ <sub>m</sub> lL                                            | σ <sub>m</sub> lw                    | <sup>7</sup> m <sub>1</sub> LW                                | Чщ                    | σ <sub>f<sub>12</sub>,</sub>       |
| Register           | 08                                                           | 18<br>V                               | 28                        | 38                                                           | 48                                   | 58                                                            | 68                    | 78                                 |
| Output             | σ <sub>m2</sub> τ                                            | $\frac{f_2}{v_f}$                     | σy                        | σ <sub>m2</sub> L                                            | σ <sub>m2</sub> ₩                    | <sup>r</sup> m2 <sub>LW</sub>                                 | -                     | σ <sub>m12</sub> w                 |
| Register           | 09                                                           | 19<br>V                               | 29                        | 39                                                           | 49                                   | 59                                                            | 69                    | 79                                 |
| Output             | σ <sub>m</sub> 3.,                                           | $\frac{\mathbf{f}_3}{\mathbf{v}_f}$   | r xy                      | σ <sub>m3L</sub>                                             | σ <sub>m3</sub> w                    |                                                               | -                     | σ <sub>m</sub> 12 <sub>T</sub>     |

•

#### NASA Contractor Report 178275 Distribution List NAS1-17205

NASA, Langley Research Center ATTN: Research Information Office, Mail Stop 151 Hampton, VA 23665-5225

NASA, Langley Research Center ATTN: H. Benson Dexter, Mail Stop 188B Hampton, VA 23665-5225

NASA John F. Kennedy Space Center ATTN: Library, NWSI-D Kennedy Space Center, FL 32899

National Aeronautics and Space Admin. ATTN: RM/Samual Venneri Washington, DC 20546

Air Force Wright Aeronautical Lab. ATTN: Larry G. Kelly, AFWAL/FIBC Wright-Patterson Air Force Base, OH 45433

U.S. Army Research & Tech. Lab. Applied Technology Lab. (AVSCOM) ATTN: J. Shipley Fort Eustis, VA 23604

Department of the Navy Naval Air Systems Command ATTN: Mike Dubberley, Code AIR 530 Room 980 JP2 Washington, DC 20361

The Boeing Company Commercial Airplane Group P.O. Box 3707 ATTN: J.T. Quinlivan, MS 6C-11 Seattle, WA 98124 NASA Ames Research Center ATTN: Library, Mail Stop 202-3 Moffett Field, CA 94035

Jet Propulsion Laboratory 4800 Oak Grove Drive ATTN: Library, Mail 111-113 Pasadena, CA 91103

NASA Lewis Research Center 21000 Brookpark Road ATTN: Library, Mail Stop 60-3 Cleveland, OH 44135

Air Force Wright Aeronautical Lab. ATTN: F.D. Cherry, AFWAL/MLB Wright-Patterson Air Force Base, OH 45433

Air Force Wright Aeronautical Lab. ATTN: T.J. Reinhart, AFWAL/MLSE Wright-Patterson Air Force Base, OH 45433

U.S. Army Aerostructures Directorate (AVSCOM), Mail Stop 266 NASA Langley Research Center Hampton, VA 23665-5225

Beech Aircraft Corporation 9709 East Central Avenue ATTN: Ed Hooper Wichita, KS 67201

The Boeing Company Commercial Airplane Group P.O. Box 3707 ATTN: J.M. Hopper, MS 6C-11 Seattle, WA 98124 Bell Helicopter Company Box 482 ATTN: Charles Rogers Fort Worth, TX 76101

General Electric Commpany Space Division P.O. Box 8555 ATTN: C. Zweben Philadelphia, PA 19101

L.J. Broutman & Associates 10 West 35th Street ATTN: K.E. Hofer, Jr. Chicago, IL 60616

McDonnell Aircraft Company P.O. Box 516 ATTN: J.F. Harrell, Dept. 112D Bldg. 220 St. Louis, MO 63166

Rockwell International Corporation International Airport ATTN: Dr. Leslie M. Lackman Code 115001, GD14 Los Angeles, CA 90009

Texas A&M University Aerospace Engineering Department ATTN: W.J. Horn College Station, TX 77843

Lockheed Georgia Company Department 72-77/Zone 450 ATTN: Sherrill Biggers Marietta, GA 30063 General Dynamics Corporation Fort Worth Division P.O. Box 748 ATTN: W.D. Buntin, MZ 2633 Fort Worth, TX 76101

Grumman Aerospace Corporation ATTN: Sam Dastin, MS BlO, Plant 25 Bethpage, NY 11714

Lockheed Aircraft Corporation Lockheed-Georgia Company 86 South Cobb Drive ATTN: W.E. Harvill, Dept. 72-77 Bldg. B-95, Zone 450 Marietta, GA 30063

Lockheed-Aircraft Corporation Lockheed-California Company ATTN: C.F. Griffin, Dept. 76-20 Bldg. 199 Burbank, CA 91520

Northrop Corporation 3901 West Broadway ATTN: C. Rosenkranz, Manager Department 3851/82 Hawthorne, CA 90250

Gulfstream Aerospace Corporation P.O. Box 2206 ATTN: G.S. Viteritti Savannah, GA 31402

Atlantic Research Corporation 5390 Cherokee Avenue ATTN: Dick T. Brown Alexandria, VA 22314 University of Delaware Dept. of Mechanical Engineering ATTN: Tsu-Wei Chou Newark, DE 19716

University of Delaware Dept of Mechanical Engineering ATTN: Scott Fowser Newark, DE 19716

Office of Naval Research Code 1131 800 N. Quincy Street ATTN: L. H. Peebles Arlington, VA 22217

VPI&SU ESM Department ATTN: Robert Simonds Blacksburg, VA 24061

University of Delaware Center for Composite Materials 201 Spencer Lab ATTN: Dale Wilson Newark, DE 19716

Naval Research Laboratory Code 6383 ATTN: Irv Wolock Washington, DC 20375

University of Maryland Mechanical Engineering Department ATTN: M.W. Hyer College Park, MD 20742

David Taylor Naval Ship R&D Cntr. Code 2844 ATTN: Tom Juska Annapolis, MD 21402 David Taylor Naval Ship R&D Cntr. Code 2844 ATTN: Roger M. Crane Annapolis, MD 21402

Naval Air Development Center Code 6043 ATTN: Lee W. Gause Warminster, PA 18974

Pepin Associates 97A Exchange Street, Suite 302 ATTN: John Pepin Portland, MA 04101

Naval Surface Weapons Center Nometallics Materials Division ATTN: Dick Weller Silver Spring, MD 20910

Drexel University Department of Materials Engineering 32nd & Chestnut Streets ATTN: Christopher Pastore Philadelphia, PA 19104

Fiber Materials, Inc. Biddeford Industrial Park ATTN: John Herrick Biddeford, ME 04005

VPI&SU ESM Department ATTN: Robert Jones Blacksburg, VA 24061

Clemson University Department of Mechanical Engineering ATTN: John Kennedy Clemson, SC 29631 Drexel University Materials Engineering Department 32nd & Chestnut Streets ATTN: M.J. Koczak Philadelphia, PA 19104

Textile Products 2512 West Woodland Drive ATTN: John McGrath Anaheim, CA 92801

NASA Goddard Space Flight Center ATTN: Library Greenbelt, MD 20771

NASA Dryden Flight Research Center ATTN: Library Edwards, CA 93523 Stratford, CT 06497

NASA Lyndon B. Johnson Space Center ATTN: JM6/Library Houston, TX 77058

NASA Marshall Space Flight Center ATTN: AS24L/Library Marshall Space Flight Center, AL 35812

Office, Chief of Research & Dev. Physical & Engineering Sciences Div. Department of the Army ATTN: Richard L. Ballard Washington, DC 20310

Air Force Wright Aeronautical Lab. ATTN: R.C. Tomashot, AFWAL/MLTN Wright-Patterson Air Force Base, OH 45433

U.S. Army Materials Tech.Lab. ATTN: D.W. Oplinger Watertown, MA 02172-2719 Textile Technologies, Inc. ATTN: Ted Lynch Hatboro, PA 19040

David Taylor Naval Ship R&D Cntr. Code 1720 ATTN: Alex Macander Bethesda, MD 20084

Bell Helicopter Company Box 482 ATTN: Henry Wilson Fort Worth, TX 76101

United Technologies Corporation Sikorsky Aircraft Division ATTN: Dave Lowry

Hexcel Corporation 11711 Dublin Blvd. ATTN: Jim Bumgarner Dublin, CA 94566

David Taylor Naval Ship R&D Cntr. Code 2844 ATTN: E.T. Camponeschi Annapolis, MD 21402

Lockheed Georgia Company Department 72-77/Zone 450 ATTN: John Dickson Marietta, GA 30063

Douglas Aircraft Company Dept. E-84, Mail Code 36-90 3855 Lakewood Blvd. ATTN: Ray Palmer Long Beach, CA 90846

Atlantic Research Corporation 5390 Cherokee ATTN: Della Scott Alexandria, VA 22314 The Boeing Company Commercial Airplane Group P.O. Box 3707 ATTN: Randy Coggeshall, MS 6C-11 Seattle, WA 98124

The Boeing Company Vertol Division P.O. Box 16858 ATTN: Erwin Durchlaub Philadelphia, PA 19142

General Dynamics Corporation Convair Division P.O. Box 85357 ATTN: Dennis R. Dunbar, MZ 21-9501 San Diego, CA 92138

McDonnell Douglas Helicopter Company Centinela and Teale Sts. ATTN: Donald H. Mancill, Bldg. 12, MS T136 Culver City, CA 90230

Martin Marietta Corporation P.O. Box 179 ATTN: John Lager Denver, CO 80201

McDonnell Douglas Corporation 3855 Lakewood Blvd. ATTN: Matt Stolle C1-E84, MC 36-52 Long Beach, CA 90846

NASA Scientific and Technical Information Facility P.O. Box 8757 Baltimore/Washington Int'l. Airport Maryland 21240 University of Delaware Center for Composite Materials 201 Spencer Lab ATTN: D. Wilkins Newark, DE 19716

Office of Naval Research Code 1132-SM 800 N. Quincy Street ATTN: Y. Rajapakse Arlington, VA 22217

General Dynamics Convair Division ATTN: Paul Hertzberg San Diego, CA 92123

JR&E P.O. Box 7200 ATTN: Julius Jortner Costa Mesa, CA 92626

Drexel University Materials Engineering Department 32nd & Chestnut Streets ATTN: Frank Ko Philadelphia, PA 19104

Textile Technologies, Inc. ATTN: Janice Maiden Hatboro, PA 19040

## Standard Bibliographic Page

|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           | a Desiniant's Catalog Ma                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. Government Accession No.                                                                                                                                                                                                                                                               | 3. Recipient's Catalog No.                                                                                                                                                                                                                                                   |
| NASA CR-178275                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           | 5 Report Date                                                                                                                                                                                                                                                                |
| Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19<br>                                                                                                                                                                                                                                                                                    | August 1987                                                                                                                                                                                                                                                                  |
| Analysis of Woven Fabrics for                                                                                                                                                                                                                                                                                                                                                                                                                       | r Reinforced Composite                                                                                                                                                                                                                                                                    | August, 1907                                                                                                                                                                                                                                                                 |
| Materials                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                           | 6. Performing Organization Code                                                                                                                                                                                                                                              |
| Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                           | 8. Performing Organization Report No.                                                                                                                                                                                                                                        |
| Norris F. Dow, V. Ramnath, an                                                                                                                                                                                                                                                                                                                                                                                                                       | nd B. Walter Rosen                                                                                                                                                                                                                                                                        | MSC TFR 1715/0210                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                           | 10. Work Unit No.                                                                                                                                                                                                                                                            |
| Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |
| Materials Sciences Corporation                                                                                                                                                                                                                                                                                                                                                                                                                      | on<br>Dileo                                                                                                                                                                                                                                                                               | 11. Contract or Grant No.                                                                                                                                                                                                                                                    |
| Gwynedd Plaza II, Bethlenem I                                                                                                                                                                                                                                                                                                                                                                                                                       | PIKE                                                                                                                                                                                                                                                                                      | NAS1-17205                                                                                                                                                                                                                                                                   |
| Spring House, PA 19477                                                                                                                                                                                                                                                                                                                                                                                                                              | ş                                                                                                                                                                                                                                                                                         | 13. Type of Report and Period Covered                                                                                                                                                                                                                                        |
| 2. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                               | -2                                                                                                                                                                                                                                                                                        | FINAL 11/3/82 - 4/30/8                                                                                                                                                                                                                                                       |
| National Aeronautics and Spa                                                                                                                                                                                                                                                                                                                                                                                                                        | ce Administration                                                                                                                                                                                                                                                                         | 14 Sponsoring Agency Code                                                                                                                                                                                                                                                    |
| National Actonautics and Spa                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           | 14. Sponsoring Agency code                                                                                                                                                                                                                                                   |
| Hampton, VA 23665                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |
| 5. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |
| Langley Technical Monitor:                                                                                                                                                                                                                                                                                                                                                                                                                          | H. Benson Dexter                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                              |
| Final Report                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |
| I India report                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per                                                                                                                                                                                                                                                                                 | as reinforcements for co<br>of properties are review<br>three-dimensional const<br>Methodology developed is<br>formance of a wide varie                                                                                                                                                   | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ty of reinforcement con-                                                                                                                                        |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>einforcements. Overall r                                                            | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>and triaxial woven,<br>results are incorporated                                                       |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>. Comparisons are made<br>composites having biaxia<br>einforcements. Overall r                                                                 | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ty of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>results are incorporated                                                      |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>. Comparisons are made<br>composites having biaxia<br>inforcements. Overall r                                                                  | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                      |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>einforcements. Overall r                                                            | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                      |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>einforcements. Overall r                                                            | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>and triaxial woven,<br>results are incorporated                                                       |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>comparisons are made<br>composites having biaxia<br>einforcements. Overall r                                                                   | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ty of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>results are incorporated                                                      |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>. Comparisons are made<br>composites having biaxia<br>einforcements. Overall r                                                                 | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>results are incorporated                                                     |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>anforcements. Overall r                                                             | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                      |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>e composites having biaxia<br>einforcements. Overall r                                                            | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ty of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                       |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>einforcements. Overall r                                                            | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                      |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>einforcements. Overall r                                                            | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>results are incorporated                                                     |
| 6. Abstract<br>The use of woven fabrics<br>depth. Methods of analysis<br>particular attention paid to<br>thickness reinforcements. M<br>evaluate potentials for per<br>structions including hybrids<br>properties of representative<br>and laminated tape lay-up re<br>in advanced weave designs.                                                                                                                                                   | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>composites having biaxia<br>einforcements. Overall r                                                              | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                      |
| <ul> <li>6. Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. M evaluate potentials for per structions including hybrids properties of representative and laminated tape lay-up re in advanced weave designs. </li> <li>17. Key Words (Suggested by Authors(s))</li> </ul>                                                                                                        | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>cformance of a wide varie<br>s. Comparisons are made<br>e composites having biaxia<br>einforcements. Overall r                                                           | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated                                                      |
| <ul> <li>Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. M evaluate potentials for per structions including hybrids properties of representative and laminated tape lay-up re in advanced weave designs. </li> <li>17. Key Words (Suggested by Authors(s))</li> <li>Fiber reinforced composites</li> </ul>                                                                      | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>e composites having biaxia<br>einforcements. Overall r<br>18. Distribution S<br>, Fabrics<br>nates. Unclassif     | <pre>mposites are considered in<br/>ed and extended, with<br/>ructions having thru the<br/>used parametrically to<br/>ity of reinforcement con-<br/>of predicted and measured<br/>1 and triaxial woven,<br/>results are incorporated<br/>Statement<br/>ied - Unlimited</pre> |
| <ul> <li>Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. M evaluate potentials for per structions including hybrids properties of representative and laminated tape lay-up re in advanced weave designs. </li> <li>17. Key Words (Suggested by Authors(s))</li> <li>Fiber reinforced composites</li> <li>Mechanical properties, Lamin</li> </ul>                                | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>a composites having biaxia<br>einforcements. Overall r<br>Nerall r<br>18. Distribution S<br>nates, Unclassif:     | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>and triaxial woven,<br>results are incorporated                                                       |
| <ul> <li>Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. M evaluate potentials for per structions including hybrids properties of representative and laminated tape lay-up re in advanced weave designs. </li> <li>17. Key Words (Suggested by Authors(s))</li> <li>Fiber reinforced composites</li> <li>Mechanical properties, Lami:</li> <li>Impact resistance.</li> </ul>    | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>a composites having biaxia<br>einforcements. Overall r<br>Nerall r<br>18. Distribution S<br>nates, Unclassif:                                | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>results are incorporated<br>sults are incorporated                           |
| <ul> <li>Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. Mevaluate potentials for perstructions including hybrids properties of representative and laminated tape lay-up rein advanced weave designs. 17. Key Words (Suggested by Authors(s)) Fiber reinforced composites Mechanical properties, Lamin Impact resistance.</li></ul>                                             | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>e composites having biaxia<br>einforcements. Overall r<br>Nerall r<br>18. Distribution S<br>nates, Unclassif:     | <pre>mposites are considered in<br/>ed and extended, with<br/>ructions having thru the<br/>used parametrically to<br/>ity of reinforcement con-<br/>of predicted and measured<br/>1 and triaxial woven,<br/>results are incorporated</pre>                                   |
| <ul> <li>6. Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. M evaluate potentials for per structions including hybrids properties of representative and laminated tape lay-up re in advanced weave designs. </li> <li>17. Key Words (Suggested by Authors(s))</li> <li>Fiber reinforced composites</li> <li>Mechanical properties, Lamin</li> <li>Impact resistance.</li> </ul> | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>cformance of a wide varie<br>s. Comparisons are made<br>e composites having biaxia<br>binforcements. Overall r<br>overall r<br>18. Distribution S<br>nates, Unclassif:   | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ity of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>results are incorporated<br>Statement<br>ied - Unlimited                     |
| <ul> <li>6. Abstract The use of woven fabrics depth. Methods of analysis particular attention paid to thickness reinforcements. Mevaluate potentials for perstructions including hybrids properties of representative and laminated tape lay-up rein advanced weave designs. 17. Key Words (Suggested by Authors(s)) Fiber reinforced composites Mechanical properties, Laminimpact resistance. 19. Security Classif.(of this report)</li></ul>     | as reinforcements for co<br>of properties are review<br>o three-dimensional const<br>Methodology developed is<br>formance of a wide varie<br>s. Comparisons are made<br>e composites having biaxia<br>einforcements. Overall r<br>, Fabrics<br>nates,<br>20. Security Classif (of this pa | mposites are considered in<br>ed and extended, with<br>ructions having thru the<br>used parametrically to<br>ty of reinforcement con-<br>of predicted and measured<br>1 and triaxial woven,<br>esults are incorporated<br>Statement<br>ied - Unlimited                       |

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA Langley Form 63 (June 1985)

.

-Z

. . 1