FIELD BOOK

KEUFFEL & ESSER CO.

NEW YORK • HOBOKEN, N. J. CHICAGO • DETROIT • ST. LOUIS SAN FRANCISCO • LOS ANGELES • MONTREAL
Since 1867 K&E equipment and materials have been partners of the draftsman, the engineer, the surveyor and the scientist in shaping the modern world.

Whatever your needs, whether drawing instruments, papers, cloths, slide rules, surveying equipment, measuring tapes—in fact anything for the drafting room, for reproduction or for work in the field—think first of K&E.
9/17/71 Sheep Mtn
Top jointed 55 ft - N75W
38° NE
0 to 20 - Green Shaley 55 ft/
20 to 51 - Yellow to cream
Yielded 55 ft 97% w/2% Glencore
51 to 56 - Yellow heavy
carbonate rock (summit height)
then in line material
bed to 3 1/2
56 to line slope 60° up
Bottom of dolite
20° slope 60°
0 to 20' red shale etc.
0.5° 20°
20' to 100' covered
100' to 116' covered
116' yellow brown carbonate
CURVE FORMULAS

\[
\begin{align*}
T &= R \tan \frac{1}{I} \\
T &= \frac{50 \tan \frac{1}{I}}{\sin \frac{1}{D}} \\
\sin \frac{1}{D} &= \frac{50}{R} \\
\sin \frac{1}{D} &= \frac{50 \tan \frac{1}{I}}{T}
\end{align*}
\]

\[
\begin{align*}
R &= T \cot \frac{1}{I} \\
R &= \frac{50}{\sin \frac{1}{D}} \\
E &= R \cos \sec \frac{1}{I} \\
E &= T \tan \frac{1}{I}
\end{align*}
\]

Chord def. = \(\frac{\text{chord}^2}{R} \)

No. chords = \(\frac{1}{D} \)

Tan. def. = \(\frac{1}{1} \) chord def.

The square of any distance, divided by twice the radius, will equal the distance from the curve, very nearly.

To find angle for a given distance and deflection.

Rule 1. Multiply the given distance by .01745 (def. for \(\frac{1}{100} \) for 1 ft.) and divide given deflection by the product.

Rule 2. Multiply given distance by 57.3, and divide the product by the given distance.

To find deflection for a given angle and distance. Multiply the angle by .01745, and the product by the distance.

GENERAL DATA

RIGHT ANGLE TRIANGLES. Square the altitude, divide by twice the base. Add quotient to base for hypotenuse.

Given Base 100, Alt. 10.10 \(\div 200 = 0.5 \), 100 + 0.5 = 100.5 hyp.

Given Hyp. 100, Alt. 25.25 \(\div 200 = 1.25 \), 100 + 1.25 = 101.25 hyp.

Error in first example, .002; in last, .045.

To find tons of rail in one mile of track: multiply weight per yard by 14, and divide by 7.

LEVELING. The correction for curvature and refraction, in feet and decimals of feet is equal to 0.574 \(d^2 \), where \(d \) is the distance in miles. The correction for curvature alone is closely, \(\frac{\pi d^2}{2} \). The combined correction is negative.

PROBABLE ERROR. If \(d_1, d_2, d_3 \), etc. are the discrepancies of various results from the mean, and if \(\Sigma d^2 \) is the sum of the squares of these differences and \(n \) is the number of observations, then the probable error of the mean =

\[
\pm \frac{0.6745 \sqrt{\Sigma d^2}}{\sqrt{n(n-1)}}
\]

MINUTES IN DECIMALS OF A DEGREE

1'	.0167	11'	.1833	21'	.3500	31'	.5167	41'	.6833	51'	.8500
2'	.0333	12'	.2000	22'	.3667	32'	.5333	42'	.7000	52'	.8667
3'	.0500	13'	.2167	23'	.3833	33'	.5500	43'	.7167	53'	.9000
4'	.0667	14'	.2333	24'	.4000	34'	.5667	44'	.7333	54'	.9000
5'	.0833	15'	.2500	25'	.4167	35'	.5833	45'	.7500	55'	.9167
6'	.1000	16'	.2667	26'	.4333	36'	.6000	46'	.7667	56'	.9333
7'	.1167	17'	.2833	27'	.4500	37'	.6167	47'	.7833	57'	.9500
8'	.1333	18'	.3000	28'	.4667	38'	.6333	48'	.8000	58'	.9667
9'	.1500	19'	.3167	29'	.4833	39'	.6500	49'	.8167	59'	.9833
10'	.1667	20'	.3333	30'	.5000	40'	.6667	50'	.8333	60'	1.0000

INCHES IN DECIMALS OF A FOOT

<table>
<thead>
<tr>
<th>1-16</th>
<th>3-32</th>
<th>16</th>
<th>3-16</th>
<th>16</th>
<th>3-16</th>
<th>16</th>
<th>3-16</th>
<th>16</th>
<th>3-16</th>
<th>16</th>
<th>3-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0052</td>
<td>.0078</td>
<td>.0104</td>
<td>.0156</td>
<td>.0208</td>
<td>.0260</td>
<td>.0313</td>
<td>.0417</td>
<td>.0521</td>
<td>.0625</td>
<td>.0729</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>.0833</td>
<td>.1667</td>
<td>.2500</td>
<td>.3333</td>
<td>.4167</td>
<td>.5000</td>
<td>.5833</td>
<td>.6667</td>
<td>.7500</td>
<td>.8333</td>
<td>.9167</td>
<td></td>
</tr>
</tbody>
</table>
TRIGONOMETRIC FORMULAS

Solution of Right Triangles

For Angle A. \[\sin A = \frac{a}{b}, \cos A = \frac{b}{c}, \tan A = \frac{a}{b}, \cot A = \frac{b}{a}, \sec A = \frac{c}{b}, \cosec A = \frac{c}{a} \]

Given \(a, b \) Required \(A, B, c \)

\[\tan A = \frac{a}{b} = \cot B, c = \sqrt{a^2 + b^2} = \sqrt{1 + \frac{b^2}{a^2}} \]

Solution of Oblique Triangles

Given \(A, B, a \) Required \(c, B, A \)

\[\sin A = \frac{a}{c} = \cos B, b = \sqrt{(c-a)(c-a)} = c \sqrt{1 - \frac{a^2}{c^2}} \]

Area \(\frac{1}{2} \sin A \cdot \sin B \cdot \sin C = \frac{1}{2} \sin \frac{A-B}{2} \sin \frac{A+B}{2} \)

Area \(\frac{1}{2} \sin A \cdot \sin B \cdot \sin C = \frac{1}{2} \sin \frac{A-B}{2} \sin \frac{A+B}{2} \)

REDUCTION TO HORIZONTAL

Horizontal distance = Slope distance multiplied by the cosine of the vertical angle. Thus: slope distance = 319.4 ft. Vert. angle = 5° 10'. Since \(\cos 5° 10' = .9999 \), horizontal distance = 319.4 \(\times .9999 = 318.09 \) ft.

When the rise is known, the horizontal distance is approximately the slope distance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft., slope distance = 302.6 ft. Horizontal distance = \(\frac{302.6 - 14 \times 14}{2 \times 302.6} = 302.6 - 0.32 = 302.28 \) ft.